Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa


Hello. Here is my question.

 

#GIVEN:

ST := [`162` = Record(mu = 475, sigma = 41), `70` = Record(mu = 480, sigma = 42),
       `168` = Record(mu = 448, sigma = 103)]

[`162` = Record(mu = 475, sigma = 41), `70` = Record(mu = 480, sigma = 42), `168` = Record(mu = 448, sigma = 103)]

(1)

Games:=[[`162`, `70`], [`70`, `168`], [`168`, `162`]]

[[`162`, `70`], [`70`, `168`], [`168`, `162`]]

(2)

#I need Maple commands to follow the order of Games to auto create STO please

STO:=[`162` = Record(mu = 475, sigma = 41),`70` = Record(mu = 480, sigma = 42),
       `70` = Record(mu = 480, sigma = 42),`168` = Record(mu = 448, sigma = 103),
     `168` = Record(mu = 448, sigma = 103),`162` = Record(mu = 475, sigma = 41)]

`Non-fatal error while reading data from kernel.`

(3)

 


 

Download ORDERED.mw

Good day.

My question involves a set of prescribed points in the Cartesian plane. The x and y ranges are fixed. The points are connected by (imaginary) horizontal and vertical lines to produce a fixed number of blocks / grids.

An example is given in the attached file.  Grid_Example.mw

Now, I wish to reduce the intervals between these points by a scaling factor, n, so as to generate more blocks within the plane that is constrained by the x and y-ranges.

In doing so, I need to find the (x,y)-location of these points in the plane and it would also be great if I could obtain a simple plot.  

As I have several scaling factors to investigate, I was hoping someone may be able to guide me towards a simple routine to help obtain these solutions.

Once again, thanks for taking the time to read this.

 

Dear Maple Users, 

 

First of all I would like to thank for your great support and hints on making a package for Maple. It has made possible for me to construct this package here: 

 

restart; 
MyMat:=module()
description "My Package";
option package; 
export RegModelPlot,RegModel;
RegModelPlot :=proc(c::algebraic,xd::list,yd::list,x::algebraic)
    uses Statistics, plots:
     display
                            (  [ plot
                                 ( Fit(c, xd, yd, x),
                                   x=min(xd)..max(xd),
                                   color=blue,gridlines,
                                   title=typeset("Regressionformula\n f(x) = ", evalf[4](Fit(c, xd, yd, x))),caption=typeset("Residuals = ", Fit(c, xd, yd, x, output = residuals) ))                    
                                 ,
                            
                                 plot
                                 ( xd, yd,
                                   style=point,
                                   symbol=solidcircle,
                                   symbolsize=10,
                                   color=red
                                 )
                               ],
                               size=[800,600]
                            );
                           
                           end proc; 

    RegModel:=proc(c::algebraic,xd::list,yd::list,x::algebraic)
            uses Statistics, plots:
return  Fit(c, xd, yd, x);
end proc; 
    end module

 

My question is now. How do I make it installable ? Meaning, making it so I can be accessed using with the with() argument alene? I have tried to convert it to into an MLA-file and place it in the lib folder. 
 

But if I type with(MyMat) it gives me the error: 

Error, invalid input: with expects its 1st argument, pname, to be of type {`module`, package}, but received MyMat 
 

So anyone with an idea/hint on what I need to add to make the package installable? 

 

Thanks in advance :)

Hi,

i have a problem with this code ?

CodeVectorCalculus.mw

ideas ?

Thanks

Ty4 :=combine(-(chi*omega^2+2*omega)*cos(omega*(Upsilon+b1))*P1*(3*exp(-3*omega)*kappa+exp(-omega)*kappa+exp(-omega*(2*d1+1))*kappa^2+3*exp(-omega*(2*d1+3))*kappa^2-2*exp(-omega*(2*d1+3))*omega-4*exp(-3*omega)*omega^2-2*exp(-omega*(2*d1+3))*d1*kappa*nu__p^2*omega+4*exp(-omega*(2*d1+3))*d1*kappa*nu__p*omega+2*exp(-omega*(2*d1+1))*d1*kappa*nu__p^2*omega+4*exp(-omega*(2*d1+1))*d1*kappa*nu__p*omega-exp(-3*omega)*kappa*nu__p^2+exp(-omega)*kappa*nu__p^2+exp(-omega*(2*d1+1))*kappa^2*nu__p^2-exp(-omega*(2*d1+3))*kappa^2*nu__p^2+2*exp(-omega*(2*d1+1))*d1*kappa*omega-8*exp(-omega*(2*d1+3))*d1*nu__p^2*omega^3-16*exp(-omega*(2*d1+3))*d1*nu__p*omega^3-4*exp(-omega*(2*d1+3))*kappa*nu__p^2*omega^2-8*exp(-omega*(2*d1+3))*kappa*nu__p*omega^2+6*exp(-omega*(2*d1+3))*d1*kappa*omega-4*exp(-3*omega)*kappa*nu__p*omega+4*exp(-3*omega)*d1*nu__p^2*omega^2+8*exp(-3*omega)*d1*nu__p*omega^2-2*exp(-3*omega)*kappa*nu__p^2*omega+2*exp(-3*omega)*kappa*nu__p+2*exp(-omega)*kappa*nu__p+2*exp(-omega*(2*d1+1))*kappa^2*nu__p+2*exp(-omega*(2*d1+3))*kappa^2*nu__p-8*exp(-omega*(2*d1+3))*d1*omega^3-4*exp(-omega*(2*d1+3))*nu__p*omega-2*exp(-omega*(2*d1+3))*nu__p^2*omega-4*exp(-omega*(2*d1+3))*kappa*omega^2-2*exp(-3*omega)*kappa*omega-4*exp(-3*omega)*nu__p^2*omega^2+4*exp(-3*omega)*d1*omega^2-8*exp(-3*omega)*nu__p*omega^2)*exp(-omega*(1-d1-chi))/(omega*(4*exp(-2*omega)*nu__p^2*omega^2+8*exp(-2*omega)*nu__p*omega^2-exp(-4*omega)*nu__p^2+2*exp(-2*omega)*nu__p^2+4*exp(-2*omega)*omega^2+2*exp(-4*omega)*nu__p-4*exp(-2*omega)*nu__p-nu__p^2+3*exp(-4*omega)+10*exp(-2*omega)+2*nu__p+3)*(kappa+1)*Pi),exp);

 

Hey guys, I am looking for a way to translate a maple code to matlab with the resultnames of codegeneration following a rule set by the loop. I tried a few ways, including with printf in the result name but no success.

Basically I need the resultname variables to be KNL(1,1) or KNL[1,1]. It doesn't let me do the way I put in the sheet, it renames the variable automatically.

Please see the sheet attached

Thanks in advance!!

restart

with(CodeGeneration)

with(LinearAlgebra)

A := RandomMatrix(6, 6)

Matrix(%id = 18446746689673050582)

(1)

``

for ii to 6 do for jj to 6 do Matlab(A[ii, jj], resultname = KNL[ii, jj]) end do end do

cg = 67;

 

``

Download Matlab_-_Resultname.mw

My problem is explained with sufficient detail in the below worksheet:

 

restart

Digits := 100:

with(StringTools); with(FileTools); with(ListTools)

``

currentdir("H:\\MAIN DIRECTORY\\ESD-USB\\my_maple_library")

L[1] := ListDirectory(currentdir()):

L[2] := [seq([k, L[1][k]], k = 1 .. nops(L[1]))]:

read L[1][15]:

currentdir("H:\\MAIN DIRECTORY\\ESD-USB\\Computer Science\\MAPLE\\Exponentiation by Squaring"):

 

B := proc (n) options operator, arrow; [seq(d(n, 2, j), j = 0 .. floor(ln(n)/ln(2)))] end proc:

 

 

Identity0 := proc (x, n) options operator, arrow; x^n = piecewise(`mod`(x, 2) = 1, x*(x^2)^((1/2)*n-1/2), `mod`(x, 2) = 0, (x^2)^((1/2)*n)) end proc

NULL

Generate_Equations_List := proc (n) global EquationsList, r, B_n, T; B_n := B(n); T := nops(B_n); r[T] := 1; return [seq(r[u-1] = r[u]^2*x^B_n[u], u = 1 .. T)] end proc:

Exp_by_squares := proc (M, Y) global R; Generate_Equations_List(M); R[1] := max([allvalues(rhs(isolate(F[0](Y, M)[1], r[1])))]); return 'x^n' = R[1]^2*X^B_n[1] end proc:

 

N := (rand(25 .. 33))():

n = 31

 

x = 34

 

x^n = 299120672332806228664106719451209941853702979584

 

x^n = 299120672332806228664106719451209941853702979584

(1)

NULL

st := time[real]():

x^n = 299120672332806228664106719451209941853702979584

 

0.40e-1

(2)

st := time[real]():

x^n = 299120672332806228664106719451209941853702979584

 

0.74e-1

(3)

is(t2 < t1)

false

(4)

``


 

Download slow.mw

 

 

So I know I have obviously done something wrong, but it has proven very difficult to establish where given how little i know about the solve function

 

Hi all; 

Given two vectors C1 and C2.
Under what condition on C1 and C2,  the two matrices D1 and D2 are equal.

condition.mw

 

many thanks for your help


I'm trying to evaluate an integral, but after several hours, MAPLE 2019 is unable to return an answer.  My CPU and memory are not being taxed, and the integrand appears well behaved.  Please see below. Any advice?

restart

istar := y*sinh(Pi*y)*exp(-alpha*y^2)*LegendreP(-1/2+I*y, 1+u)

y*sinh(Pi*y)*exp(-alpha*y^2)*LegendreP(-1/2+I*y, 1+u)

(1)

Istar := `assuming`([int(istar, y = 0 .. infinity)], [alpha > 0, u > 0])

int(y*sinh(Pi*y)*exp(-alpha*y^2)*LegendreP(-1/2+I*y, 1+u), y = 0 .. infinity)

(2)

alpha := 1; u := 2

2

(3)

plot(istar, y = 0 .. 40)

 

evalf(Istar)

``


 

Download Istar.mw

 


 

restart: with(LinearAlgebra):

# Motion equation (  Vibration of a cracked composite beam using general solution)  Edited by Adjal Yassine #

####################################################################

Motion equation of flexural  vibration in normalized form 

EI*W^(iv)-m*omega^2*W=0;

EI*W^iv-m*omega^2*W = 0

(1)

 

The general solution form of bending vibration equation

W1:=A[1]*cosh(mu*x)+A[2]*sinh(mu*x)+A[3]*cos(mu*x)+A[4]*sin(mu*x);

A[1]*cosh(mu*x)+A[2]*sinh(mu*x)+A[3]*cos(mu*x)+A[4]*sin(mu*x)

(2)

where

E:=2682e6;L:=0.18;h:=0.004;b:=0.02;rho:=2600;area=b*h;m:=rho*h*b;II:=(h*b^3)/12:

0.2682e10

 

.18

 

0.4e-2

 

0.2e-1

 

2600

 

area = 0.8e-4

 

.20800

(3)

mu:=((m*omega^2*L^4/EI)^(1/4)):

 

 Expression of cross-sectional rotation , the bending moment shear  force and torsional moment  are given as follows respectively

theta1 := (1/L)*(A[1]*mu*sinh(mu*x)+A[2]*mu*cosh(mu*x)-A[3]*mu*sin(mu*x)+A[4]*mu*cos(mu*x));

(A[1]*mu*sinh(mu*x)+A[2]*mu*cosh(mu*x)-A[3]*mu*sin(mu*x)+A[4]*mu*cos(mu*x))/L

(4)

M1:= (EI/L^2)*(A[1]*mu^2*cosh(mu*x)+A[2]*mu^2*sinh(mu*x)-A[3]*mu^2*cos(mu*x)-A[4]*mu^2*sin(mu*x));

EI*(A[1]*mu^2*cosh(mu*x)+A[2]*mu^2*sinh(mu*x)-A[3]*mu^2*cos(mu*x)-A[4]*mu^2*sin(mu*x))/L^2

(5)

S1:= (-EI/L^3)*(A[1]*mu^3*sinh(mu*x)+A[2]*mu^3*cosh(mu*x)+A[3]*mu^3*sin(mu*x)-A[4]*mu^3*cos(mu*x));

-EI*(A[1]*mu^3*sinh(mu*x)+A[2]*mu^3*cosh(mu*x)+A[3]*mu^3*sin(mu*x)-A[4]*mu^3*cos(mu*x))/L^3

(6)

 

W2:=A[5]*cosh(mu*x)+A[6]*sinh(mu*x)+A[7]*cos(mu*x)+A[8]*sin(mu*x);

A[5]*cosh(mu*x)+A[6]*sinh(mu*x)+A[7]*cos(mu*x)+A[8]*sin(mu*x)

(7)

 

theta2:= (1/L)*(A[5]*mu*sinh(mu*x)+A[6]*mu*cosh(mu*x)-A[7]*mu*sin(mu*x)+A[8]*mu*cos(mu*x));

(A[5]*mu*sinh(mu*x)+A[6]*mu*cosh(mu*x)-A[7]*mu*sin(mu*x)+A[8]*mu*cos(mu*x))/L

(8)

M2:= (EI/L^2)*(A[5]*mu^2*cosh(mu*x)+A[6]*mu^2*sinh(mu*x)-A[7]*mu^2*cos(mu*x)-A[8]*mu^2*sin(mu*x));

EI*(A[5]*mu^2*cosh(mu*x)+A[6]*mu^2*sinh(mu*x)-A[7]*mu^2*cos(mu*x)-A[8]*mu^2*sin(mu*x))/L^2

(9)

S2:= -(EI/L^3)*(A[5]*mu^3*sinh(mu*x)+A[6]*mu^3*cosh(mu*x)+A[7]*mu^3*sin(mu*x)-A[8]*mu^3*cos(mu*x));

-EI*(A[5]*mu^3*sinh(mu*x)+A[6]*mu^3*cosh(mu*x)+A[7]*mu^3*sin(mu*x)-A[8]*mu^3*cos(mu*x))/L^3

(10)

 

The boundary conditions at fixed end W1(0)=Theta(0)=0

X1:=eval(subs(x=0,W1));

A[1]+A[3]

(11)

X2:=eval(subs(x=0,theta1));

(mu*A[2]+mu*A[4])/L

(12)

X2:=collect(X2,mu)*(L/mu);

A[2]+A[4]

(13)

 

The boundary condtions at free end M2(1)=S2(1)=0

X3:=eval(subs(x=1,M2));

EI*(A[5]*mu^2*cosh(mu)+A[6]*mu^2*sinh(mu)-A[7]*mu^2*cos(mu)-A[8]*mu^2*sin(mu))/L^2

(14)

X3:=collect(X3,mu)*(L^2/mu^2/EI);

cosh(mu)*A[5]+sinh(mu)*A[6]-cos(mu)*A[7]-sin(mu)*A[8]

(15)

X4:=eval(subs(x=1,S2));

-EI*(A[5]*mu^3*sinh(mu)+A[6]*mu^3*cosh(mu)+A[7]*mu^3*sin(mu)-A[8]*mu^3*cos(mu))/L^3

(16)

X4:=collect(X4,mu);

-EI*(cosh(mu)*A[6]+sinh(mu)*A[5]-cos(mu)*A[8]+sin(mu)*A[7])*mu^3/L^3

(17)

X4:=collect(X4,EI)*(L^3/mu^3/EI);

-cosh(mu)*A[6]-sinh(mu)*A[5]+cos(mu)*A[8]-sin(mu)*A[7]

(18)

 

The additional boundary conditions at crack location

X5:=combine(M1-M2);

(EI*cosh(mu*x)*mu^2*A[1]-EI*cosh(mu*x)*mu^2*A[5]+EI*sinh(mu*x)*mu^2*A[2]-EI*sinh(mu*x)*mu^2*A[6]-EI*cos(mu*x)*mu^2*A[3]+EI*cos(mu*x)*mu^2*A[7]-EI*sin(mu*x)*mu^2*A[4]+EI*sin(mu*x)*mu^2*A[8])/L^2

(19)

X5:=collect(X5,mu);

(EI*cosh(mu*x)*A[1]-EI*cosh(mu*x)*A[5]+EI*sinh(mu*x)*A[2]-EI*sinh(mu*x)*A[6]-cos(mu*x)*EI*A[3]+A[7]*cos(mu*x)*EI-A[4]*sin(mu*x)*EI+A[8]*sin(mu*x)*EI)*mu^2/L^2

(20)

X5:=collect(X5,EI)*(L^2/mu^2/EI);

A[1]*cosh(mu*x)-A[5]*cosh(mu*x)+A[2]*sinh(mu*x)-A[6]*sinh(mu*x)-A[3]*cos(mu*x)+A[7]*cos(mu*x)-A[4]*sin(mu*x)+A[8]*sin(mu*x)

(21)

X6:=combine(S1-S2);

(-EI*cosh(mu*x)*mu^3*A[2]+EI*cosh(mu*x)*mu^3*A[6]-EI*sinh(mu*x)*mu^3*A[1]+EI*sinh(mu*x)*mu^3*A[5]+EI*cos(mu*x)*mu^3*A[4]-EI*cos(mu*x)*mu^3*A[8]-EI*sin(mu*x)*mu^3*A[3]+EI*sin(mu*x)*mu^3*A[7])/L^3

(22)

X6:=collect(X6,mu);

(-EI*cosh(mu*x)*A[2]+EI*cosh(mu*x)*A[6]-EI*sinh(mu*x)*A[1]+EI*A[5]*sinh(mu*x)+cos(mu*x)*A[4]*EI-cos(mu*x)*A[8]*EI-sin(mu*x)*EI*A[3]+sin(mu*x)*A[7]*EI)*mu^3/L^3

(23)

X6:=collect(X6,EI)*(L^3/mu^3/EI);

-cosh(mu*x)*A[2]+cosh(mu*x)*A[6]-sinh(mu*x)*A[1]+sinh(mu*x)*A[5]+cos(mu*x)*A[4]-cos(mu*x)*A[8]-sin(mu*x)*A[3]+sin(mu*x)*A[7]

(24)

 

X7:=combine(W2-(W1+c8*S1));

(EI*cosh(mu*x)*c8*mu^3*A[2]+EI*sinh(mu*x)*c8*mu^3*A[1]-EI*cos(mu*x)*c8*mu^3*A[4]+EI*sin(mu*x)*c8*mu^3*A[3]-cosh(mu*x)*A[1]*L^3+cosh(mu*x)*A[5]*L^3-sinh(mu*x)*A[2]*L^3+sinh(mu*x)*A[6]*L^3-cos(mu*x)*A[3]*L^3+cos(mu*x)*A[7]*L^3-sin(mu*x)*A[4]*L^3+sin(mu*x)*A[8]*L^3)/L^3

(25)

X8:=combine (theta2-(theta1+c44*M1));

(-EI*cosh(mu*x)*c44*mu^2*A[1]-EI*sinh(mu*x)*c44*mu^2*A[2]+EI*cos(mu*x)*c44*mu^2*A[3]+EI*sin(mu*x)*c44*mu^2*A[4]-L*cosh(mu*x)*mu*A[2]+L*cosh(mu*x)*mu*A[6]-L*sinh(mu*x)*mu*A[1]+L*sinh(mu*x)*mu*A[5]-L*cos(mu*x)*mu*A[4]+L*cos(mu*x)*mu*A[8]+L*sin(mu*x)*mu*A[3]-L*sin(mu*x)*mu*A[7])/L^2

(26)

 

The characteristic matrix function of frequency

FD8:=subs(A[1]=1,A[3]=0,X1);FD12:=subs(A[1]=0,A[3]=0,X1);FD13:=subs(A[1]=0,A[3]=1,X1);FD14:=subs(A[1]=0,A[3]=0,X1);FD15:=subs(A[1]=0,A[3]=0,X1);FD16:=subs(A[1]=0,A[3]=0,X1);FD17:=subs(A[1]=0,A[3]=0,X1);FD18:=subs(A[1]=0,A[3]=0,X1);

1

 

0

 

1

 

0

 

0

 

0

 

0

 

0

(27)

FD21:=subs(A[2]=0,A[4]=0,X2);FD22:=subs(A[2]=1,A[4]=0,X2);FD23:=subs(A[2]=0,A[4]=0,X2);FD24:=subs(A[2]=0,A[4]=1,X2);FD25:=subs(A[2]=0,A[4]=0,X2);FD26:=subs(A[2]=0,A[4]=0,X2);FD27:=subs(A[2]=0,A[4]=0,X2);FD28:=subs(A[2]=0,A[4]=0,X2);

0

 

1

 

0

 

1

 

0

 

0

 

0

 

0

(28)

 

FD31:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X3);FD32:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X3);FD33:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X3);FD34:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X3);FD35:=subs(A[5]=1,A[6]=0,A[7]=0,A[8]=0,X3);;FD36:=subs(A[5]=0,A[6]=1,A[7]=0,A[8]=0,X3);FD37:=subs(A[5]=0,A[6]=0,A[7]=1,A[8]=0,X3);FD38:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=1,X3);

0

 

0

 

0

 

0

 

cosh(mu)

 

sinh(mu)

 

-cos(mu)

 

-sin(mu)

(29)

FD41:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X4);FD42:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X4);FD43:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X4);FD44:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X4);FD45:=subs(A[5]=1,A[6]=0,A[7]=0,A[8]=0,X4);FD46:=subs(A[5]=0,A[6]=1,A[7]=0,A[8]=0,X4);FD47:=subs(A[5]=0,A[6]=0,A[7]=1,A[8]=0,X4);FD48:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=1,X4);

0

 

0

 

0

 

0

 

-sinh(mu)

 

-cosh(mu)

 

-sin(mu)

 

cos(mu)

(30)

 

FD51:=subs(A[1]=1,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X5);FD52:=subs(A[1]=0,A[2]=1,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X5);FD53:=subs(A[1]=0,A[2]=0,A[3]=1,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X5);FD54:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=1,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X5);FD55:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=1,A[6]=0,A[7]=0,A[8]=0,X5);FD56:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=1,A[7]=0,A[8]=0,X5);FD57:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=1,A[8]=0,X5);FD58:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=1,X5);

cosh(mu*x)

 

sinh(mu*x)

 

-cos(mu*x)

 

-sin(mu*x)

 

-cosh(mu*x)

 

-sinh(mu*x)

 

cos(mu*x)

 

sin(mu*x)

(31)

FD61:=subs(A[1]=1,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X6);FD62:=subs(A[1]=0,A[2]=1,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X6);FD63:=subs(A[1]=0,A[2]=0,A[3]=1,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X6);FD64:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=1,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X6);FD65:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=1,A[6]=0,A[7]=0,A[8]=0,X6);FD66:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=1,A[7]=0,A[8]=0,X6);FD67:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=1,A[8]=0,X6);FD68:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=1,X6);

-sinh(mu*x)

 

-cosh(mu*x)

 

-sin(mu*x)

 

cos(mu*x)

 

sinh(mu*x)

 

cosh(mu*x)

 

sin(mu*x)

 

-cos(mu*x)

(32)

 

FD71:=subs(A[1]=1,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X7);FD72:=subs(A[1]=0,A[2]=1,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X7);FD73:=subs(A[1]=0,A[2]=0,A[3]=1,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X7);FD74:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=1,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X7);FD75:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=1,A[6]=0,A[7]=0,A[8]=0,X7);FD76:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=1,A[7]=0,A[8]=0,X7);FD77:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=1,A[8]=0,X7);FD78:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=1,X7);

(EI*sinh(mu*x)*c8*mu^3-cosh(mu*x)*L^3)/L^3

 

(EI*cosh(mu*x)*c8*mu^3-sinh(mu*x)*L^3)/L^3

 

(EI*sin(mu*x)*c8*mu^3-L^3*cos(mu*x))/L^3

 

(-EI*cos(mu*x)*c8*mu^3-sin(mu*x)*L^3)/L^3

 

cosh(mu*x)

 

sinh(mu*x)

 

cos(mu*x)

 

sin(mu*x)

(33)

FD81:=subs(A[1]=1,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X8);FD82:=subs(A[1]=0,A[2]=1,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X8);FD83:=subs(A[1]=0,A[2]=0,A[3]=1,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X8);FD84:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=1,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X8);FD85:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=1,A[6]=0,A[7]=0,A[8]=0,X8);FD86:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=1,A[7]=0,A[8]=0,X8);FD87:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=1,A[8]=0,X8);FD88:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=1,X8);

(-EI*cosh(mu*x)*c44*mu^2-L*sinh(mu*x)*mu)/L^2

 

(-EI*sinh(mu*x)*c44*mu^2-L*cosh(mu*x)*mu)/L^2

 

(EI*cos(mu*x)*c44*mu^2+L*sin(mu*x)*mu)/L^2

 

(EI*sin(mu*x)*c44*mu^2-L*cos(mu*x)*mu)/L^2

 

sinh(mu*x)*mu/L

 

cosh(mu*x)*mu/L

 

-sin(mu*x)*mu/L

 

cos(mu*x)*mu/L

(34)

 

MM:=matrix(8,8,[[FD11,FD12,FD13,FD14,FD15,FD16,FD17,FD18],[FD21,FD22,FD23,FD24,FD25,FD26,FD27,FD28],[FD31,FD32,FD33,FD34,FD35,FD36,FD37,FD38],[FD41,FD42,FD43,FD44,FD45,FD46,FD47,FD48],[FD51,FD52,FD53,FD54,FD55,FD56,FD57,FD58],[FD61,FD62,FD63,FD64,FD65,FD66,FD67,FD68],[FD71,FD72,FD73,FD74,FD75,FD76,FD77,FD78],[FD81,FD82,FD83,FD84,FD85,FD86,FD87,FD88]]);

MM := Matrix(8, 8, {(1, 1) = FD11, (1, 2) = 0, (1, 3) = 1, (1, 4) = 0, (1, 5) = 0, (1, 6) = 0, (1, 7) = 0, (1, 8) = 0, (2, 1) = 0, (2, 2) = 1, (2, 3) = 0, (2, 4) = 1, (2, 5) = 0, (2, 6) = 0, (2, 7) = 0, (2, 8) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 0, (3, 4) = 0, (3, 5) = cosh(mu), (3, 6) = sinh(mu), (3, 7) = -cos(mu), (3, 8) = -sin(mu), (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = 0, (4, 5) = -sinh(mu), (4, 6) = -cosh(mu), (4, 7) = -sin(mu), (4, 8) = cos(mu), (5, 1) = cosh(mu*x), (5, 2) = sinh(mu*x), (5, 3) = -cos(mu*x), (5, 4) = -sin(mu*x), (5, 5) = -cosh(mu*x), (5, 6) = -sinh(mu*x), (5, 7) = cos(mu*x), (5, 8) = sin(mu*x), (6, 1) = -sinh(mu*x), (6, 2) = -cosh(mu*x), (6, 3) = -sin(mu*x), (6, 4) = cos(mu*x), (6, 5) = sinh(mu*x), (6, 6) = cosh(mu*x), (6, 7) = sin(mu*x), (6, 8) = -cos(mu*x), (7, 1) = (EI*sinh(mu*x)*c8*mu^3-cosh(mu*x)*L^3)/L^3, (7, 2) = (EI*cosh(mu*x)*c8*mu^3-sinh(mu*x)*L^3)/L^3, (7, 3) = (EI*sin(mu*x)*c8*mu^3-L^3*cos(mu*x))/L^3, (7, 4) = (-EI*cos(mu*x)*c8*mu^3-sin(mu*x)*L^3)/L^3, (7, 5) = cosh(mu*x), (7, 6) = sinh(mu*x), (7, 7) = cos(mu*x), (7, 8) = sin(mu*x), (8, 1) = (-EI*cosh(mu*x)*c44*mu^2-L*sinh(mu*x)*mu)/L^2, (8, 2) = (-EI*sinh(mu*x)*c44*mu^2-L*cosh(mu*x)*mu)/L^2, (8, 3) = (EI*cos(mu*x)*c44*mu^2+L*sin(mu*x)*mu)/L^2, (8, 4) = (EI*sin(mu*x)*c44*mu^2-L*cos(mu*x)*mu)/L^2, (8, 5) = sinh(mu*x)*mu/L, (8, 6) = cosh(mu*x)*mu/L, (8, 7) = -sin(mu*x)*mu/L, (8, 8) = cos(mu*x)*mu/L})

(35)

Program end

 

NULL

 

``


 

Download Vibration_of_a_cracked_composite_beam.mw
 

restart: with(LinearAlgebra):

# Motion equation (  Vibration of a cracked composite beam using general solution)  Edited by Adjal Yassine #

####################################################################

Motion equation of flexural  vibration in normalized form 

EI*W^(iv)-m*omega^2*W=0;

EI*W^iv-m*omega^2*W = 0

(1)

 

The general solution form of bending vibration equation

W1:=A[1]*cosh(mu*x)+A[2]*sinh(mu*x)+A[3]*cos(mu*x)+A[4]*sin(mu*x);

A[1]*cosh(mu*x)+A[2]*sinh(mu*x)+A[3]*cos(mu*x)+A[4]*sin(mu*x)

(2)

where

E:=2682e6;L:=0.18;h:=0.004;b:=0.02;rho:=2600;area=b*h;m:=rho*h*b;II:=(h*b^3)/12:

0.2682e10

 

.18

 

0.4e-2

 

0.2e-1

 

2600

 

area = 0.8e-4

 

.20800

(3)

mu:=((m*omega^2*L^4/EI)^(1/4)):

 

 Expression of cross-sectional rotation , the bending moment shear  force and torsional moment  are given as follows respectively

theta1 := (1/L)*(A[1]*mu*sinh(mu*x)+A[2]*mu*cosh(mu*x)-A[3]*mu*sin(mu*x)+A[4]*mu*cos(mu*x));

(A[1]*mu*sinh(mu*x)+A[2]*mu*cosh(mu*x)-A[3]*mu*sin(mu*x)+A[4]*mu*cos(mu*x))/L

(4)

M1:= (EI/L^2)*(A[1]*mu^2*cosh(mu*x)+A[2]*mu^2*sinh(mu*x)-A[3]*mu^2*cos(mu*x)-A[4]*mu^2*sin(mu*x));

EI*(A[1]*mu^2*cosh(mu*x)+A[2]*mu^2*sinh(mu*x)-A[3]*mu^2*cos(mu*x)-A[4]*mu^2*sin(mu*x))/L^2

(5)

S1:= (-EI/L^3)*(A[1]*mu^3*sinh(mu*x)+A[2]*mu^3*cosh(mu*x)+A[3]*mu^3*sin(mu*x)-A[4]*mu^3*cos(mu*x));

-EI*(A[1]*mu^3*sinh(mu*x)+A[2]*mu^3*cosh(mu*x)+A[3]*mu^3*sin(mu*x)-A[4]*mu^3*cos(mu*x))/L^3

(6)

 

W2:=A[5]*cosh(mu*x)+A[6]*sinh(mu*x)+A[7]*cos(mu*x)+A[8]*sin(mu*x);

A[5]*cosh(mu*x)+A[6]*sinh(mu*x)+A[7]*cos(mu*x)+A[8]*sin(mu*x)

(7)

 

theta2:= (1/L)*(A[5]*mu*sinh(mu*x)+A[6]*mu*cosh(mu*x)-A[7]*mu*sin(mu*x)+A[8]*mu*cos(mu*x));

(A[5]*mu*sinh(mu*x)+A[6]*mu*cosh(mu*x)-A[7]*mu*sin(mu*x)+A[8]*mu*cos(mu*x))/L

(8)

M2:= (EI/L^2)*(A[5]*mu^2*cosh(mu*x)+A[6]*mu^2*sinh(mu*x)-A[7]*mu^2*cos(mu*x)-A[8]*mu^2*sin(mu*x));

EI*(A[5]*mu^2*cosh(mu*x)+A[6]*mu^2*sinh(mu*x)-A[7]*mu^2*cos(mu*x)-A[8]*mu^2*sin(mu*x))/L^2

(9)

S2:= -(EI/L^3)*(A[5]*mu^3*sinh(mu*x)+A[6]*mu^3*cosh(mu*x)+A[7]*mu^3*sin(mu*x)-A[8]*mu^3*cos(mu*x));

-EI*(A[5]*mu^3*sinh(mu*x)+A[6]*mu^3*cosh(mu*x)+A[7]*mu^3*sin(mu*x)-A[8]*mu^3*cos(mu*x))/L^3

(10)

 

The boundary conditions at fixed end W1(0)=Theta(0)=0

X1:=eval(subs(x=0,W1));

A[1]+A[3]

(11)

X2:=eval(subs(x=0,theta1));

(mu*A[2]+mu*A[4])/L

(12)

X2:=collect(X2,mu)*(L/mu);

A[2]+A[4]

(13)

 

The boundary condtions at free end M2(1)=S2(1)=0

X3:=eval(subs(x=1,M2));

EI*(A[5]*mu^2*cosh(mu)+A[6]*mu^2*sinh(mu)-A[7]*mu^2*cos(mu)-A[8]*mu^2*sin(mu))/L^2

(14)

X3:=collect(X3,mu)*(L^2/mu^2/EI);

cosh(mu)*A[5]+sinh(mu)*A[6]-cos(mu)*A[7]-sin(mu)*A[8]

(15)

X4:=eval(subs(x=1,S2));

-EI*(A[5]*mu^3*sinh(mu)+A[6]*mu^3*cosh(mu)+A[7]*mu^3*sin(mu)-A[8]*mu^3*cos(mu))/L^3

(16)

X4:=collect(X4,mu);

-EI*(cosh(mu)*A[6]+sinh(mu)*A[5]-cos(mu)*A[8]+sin(mu)*A[7])*mu^3/L^3

(17)

X4:=collect(X4,EI)*(L^3/mu^3/EI);

-cosh(mu)*A[6]-sinh(mu)*A[5]+cos(mu)*A[8]-sin(mu)*A[7]

(18)

 

The additional boundary conditions at crack location

X5:=combine(M1-M2);

(EI*cosh(mu*x)*mu^2*A[1]-EI*cosh(mu*x)*mu^2*A[5]+EI*sinh(mu*x)*mu^2*A[2]-EI*sinh(mu*x)*mu^2*A[6]-EI*cos(mu*x)*mu^2*A[3]+EI*cos(mu*x)*mu^2*A[7]-EI*sin(mu*x)*mu^2*A[4]+EI*sin(mu*x)*mu^2*A[8])/L^2

(19)

X5:=collect(X5,mu);

(EI*cosh(mu*x)*A[1]-EI*cosh(mu*x)*A[5]+EI*sinh(mu*x)*A[2]-EI*sinh(mu*x)*A[6]-cos(mu*x)*EI*A[3]+A[7]*cos(mu*x)*EI-A[4]*sin(mu*x)*EI+A[8]*sin(mu*x)*EI)*mu^2/L^2

(20)

X5:=collect(X5,EI)*(L^2/mu^2/EI);

A[1]*cosh(mu*x)-A[5]*cosh(mu*x)+A[2]*sinh(mu*x)-A[6]*sinh(mu*x)-A[3]*cos(mu*x)+A[7]*cos(mu*x)-A[4]*sin(mu*x)+A[8]*sin(mu*x)

(21)

X6:=combine(S1-S2);

(-EI*cosh(mu*x)*mu^3*A[2]+EI*cosh(mu*x)*mu^3*A[6]-EI*sinh(mu*x)*mu^3*A[1]+EI*sinh(mu*x)*mu^3*A[5]+EI*cos(mu*x)*mu^3*A[4]-EI*cos(mu*x)*mu^3*A[8]-EI*sin(mu*x)*mu^3*A[3]+EI*sin(mu*x)*mu^3*A[7])/L^3

(22)

X6:=collect(X6,mu);

(-EI*cosh(mu*x)*A[2]+EI*cosh(mu*x)*A[6]-EI*sinh(mu*x)*A[1]+EI*A[5]*sinh(mu*x)+cos(mu*x)*A[4]*EI-cos(mu*x)*A[8]*EI-sin(mu*x)*EI*A[3]+sin(mu*x)*A[7]*EI)*mu^3/L^3

(23)

X6:=collect(X6,EI)*(L^3/mu^3/EI);

-cosh(mu*x)*A[2]+cosh(mu*x)*A[6]-sinh(mu*x)*A[1]+sinh(mu*x)*A[5]+cos(mu*x)*A[4]-cos(mu*x)*A[8]-sin(mu*x)*A[3]+sin(mu*x)*A[7]

(24)

 

X7:=combine(W2-(W1+c8*S1));

(EI*cosh(mu*x)*c8*mu^3*A[2]+EI*sinh(mu*x)*c8*mu^3*A[1]-EI*cos(mu*x)*c8*mu^3*A[4]+EI*sin(mu*x)*c8*mu^3*A[3]-cosh(mu*x)*A[1]*L^3+cosh(mu*x)*A[5]*L^3-sinh(mu*x)*A[2]*L^3+sinh(mu*x)*A[6]*L^3-cos(mu*x)*A[3]*L^3+cos(mu*x)*A[7]*L^3-sin(mu*x)*A[4]*L^3+sin(mu*x)*A[8]*L^3)/L^3

(25)

X8:=combine (theta2-(theta1+c44*M1));

(-EI*cosh(mu*x)*c44*mu^2*A[1]-EI*sinh(mu*x)*c44*mu^2*A[2]+EI*cos(mu*x)*c44*mu^2*A[3]+EI*sin(mu*x)*c44*mu^2*A[4]-L*cosh(mu*x)*mu*A[2]+L*cosh(mu*x)*mu*A[6]-L*sinh(mu*x)*mu*A[1]+L*sinh(mu*x)*mu*A[5]-L*cos(mu*x)*mu*A[4]+L*cos(mu*x)*mu*A[8]+L*sin(mu*x)*mu*A[3]-L*sin(mu*x)*mu*A[7])/L^2

(26)

 

The characteristic matrix function of frequency

FD8:=subs(A[1]=1,A[3]=0,X1);FD12:=subs(A[1]=0,A[3]=0,X1);FD13:=subs(A[1]=0,A[3]=1,X1);FD14:=subs(A[1]=0,A[3]=0,X1);FD15:=subs(A[1]=0,A[3]=0,X1);FD16:=subs(A[1]=0,A[3]=0,X1);FD17:=subs(A[1]=0,A[3]=0,X1);FD18:=subs(A[1]=0,A[3]=0,X1);

1

 

0

 

1

 

0

 

0

 

0

 

0

 

0

(27)

FD21:=subs(A[2]=0,A[4]=0,X2);FD22:=subs(A[2]=1,A[4]=0,X2);FD23:=subs(A[2]=0,A[4]=0,X2);FD24:=subs(A[2]=0,A[4]=1,X2);FD25:=subs(A[2]=0,A[4]=0,X2);FD26:=subs(A[2]=0,A[4]=0,X2);FD27:=subs(A[2]=0,A[4]=0,X2);FD28:=subs(A[2]=0,A[4]=0,X2);

0

 

1

 

0

 

1

 

0

 

0

 

0

 

0

(28)

 

FD31:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X3);FD32:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X3);FD33:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X3);FD34:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X3);FD35:=subs(A[5]=1,A[6]=0,A[7]=0,A[8]=0,X3);;FD36:=subs(A[5]=0,A[6]=1,A[7]=0,A[8]=0,X3);FD37:=subs(A[5]=0,A[6]=0,A[7]=1,A[8]=0,X3);FD38:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=1,X3);

0

 

0

 

0

 

0

 

cosh(mu)

 

sinh(mu)

 

-cos(mu)

 

-sin(mu)

(29)

FD41:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X4);FD42:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X4);FD43:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X4);FD44:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X4);FD45:=subs(A[5]=1,A[6]=0,A[7]=0,A[8]=0,X4);FD46:=subs(A[5]=0,A[6]=1,A[7]=0,A[8]=0,X4);FD47:=subs(A[5]=0,A[6]=0,A[7]=1,A[8]=0,X4);FD48:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=1,X4);

0

 

0

 

0

 

0

 

-sinh(mu)

 

-cosh(mu)

 

-sin(mu)

 

cos(mu)

(30)

 

FD51:=subs(A[1]=1,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X5);FD52:=subs(A[1]=0,A[2]=1,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X5);FD53:=subs(A[1]=0,A[2]=0,A[3]=1,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X5);FD54:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=1,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X5);FD55:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=1,A[6]=0,A[7]=0,A[8]=0,X5);FD56:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=1,A[7]=0,A[8]=0,X5);FD57:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=1,A[8]=0,X5);FD58:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=1,X5);

cosh(mu*x)

 

sinh(mu*x)

 

-cos(mu*x)

 

-sin(mu*x)

 

-cosh(mu*x)

 

-sinh(mu*x)

 

cos(mu*x)

 

sin(mu*x)

(31)

FD61:=subs(A[1]=1,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X6);FD62:=subs(A[1]=0,A[2]=1,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X6);FD63:=subs(A[1]=0,A[2]=0,A[3]=1,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X6);FD64:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=1,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X6);FD65:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=1,A[6]=0,A[7]=0,A[8]=0,X6);FD66:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=1,A[7]=0,A[8]=0,X6);FD67:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=1,A[8]=0,X6);FD68:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=1,X6);

-sinh(mu*x)

 

-cosh(mu*x)

 

-sin(mu*x)

 

cos(mu*x)

 

sinh(mu*x)

 

cosh(mu*x)

 

sin(mu*x)

 

-cos(mu*x)

(32)

 

FD71:=subs(A[1]=1,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X7);FD72:=subs(A[1]=0,A[2]=1,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X7);FD73:=subs(A[1]=0,A[2]=0,A[3]=1,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X7);FD74:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=1,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X7);FD75:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=1,A[6]=0,A[7]=0,A[8]=0,X7);FD76:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=1,A[7]=0,A[8]=0,X7);FD77:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=1,A[8]=0,X7);FD78:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=1,X7);

(EI*sinh(mu*x)*c8*mu^3-cosh(mu*x)*L^3)/L^3

 

(EI*cosh(mu*x)*c8*mu^3-sinh(mu*x)*L^3)/L^3

 

(EI*sin(mu*x)*c8*mu^3-L^3*cos(mu*x))/L^3

 

(-EI*cos(mu*x)*c8*mu^3-sin(mu*x)*L^3)/L^3

 

cosh(mu*x)

 

sinh(mu*x)

 

cos(mu*x)

 

sin(mu*x)

(33)

FD81:=subs(A[1]=1,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X8);FD82:=subs(A[1]=0,A[2]=1,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X8);FD83:=subs(A[1]=0,A[2]=0,A[3]=1,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X8);FD84:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=1,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X8);FD85:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=1,A[6]=0,A[7]=0,A[8]=0,X8);FD86:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=1,A[7]=0,A[8]=0,X8);FD87:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=1,A[8]=0,X8);FD88:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=1,X8);

(-EI*cosh(mu*x)*c44*mu^2-L*sinh(mu*x)*mu)/L^2

 

(-EI*sinh(mu*x)*c44*mu^2-L*cosh(mu*x)*mu)/L^2

 

(EI*cos(mu*x)*c44*mu^2+L*sin(mu*x)*mu)/L^2

 

(EI*sin(mu*x)*c44*mu^2-L*cos(mu*x)*mu)/L^2

 

sinh(mu*x)*mu/L

 

cosh(mu*x)*mu/L

 

-sin(mu*x)*mu/L

 

cos(mu*x)*mu/L

(34)

 

MM:=matrix(8,8,[[FD11,FD12,FD13,FD14,FD15,FD16,FD17,FD18],[FD21,FD22,FD23,FD24,FD25,FD26,FD27,FD28],[FD31,FD32,FD33,FD34,FD35,FD36,FD37,FD38],[FD41,FD42,FD43,FD44,FD45,FD46,FD47,FD48],[FD51,FD52,FD53,FD54,FD55,FD56,FD57,FD58],[FD61,FD62,FD63,FD64,FD65,FD66,FD67,FD68],[FD71,FD72,FD73,FD74,FD75,FD76,FD77,FD78],[FD81,FD82,FD83,FD84,FD85,FD86,FD87,FD88]]);

MM := Matrix(8, 8, {(1, 1) = FD11, (1, 2) = 0, (1, 3) = 1, (1, 4) = 0, (1, 5) = 0, (1, 6) = 0, (1, 7) = 0, (1, 8) = 0, (2, 1) = 0, (2, 2) = 1, (2, 3) = 0, (2, 4) = 1, (2, 5) = 0, (2, 6) = 0, (2, 7) = 0, (2, 8) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 0, (3, 4) = 0, (3, 5) = cosh(mu), (3, 6) = sinh(mu), (3, 7) = -cos(mu), (3, 8) = -sin(mu), (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = 0, (4, 5) = -sinh(mu), (4, 6) = -cosh(mu), (4, 7) = -sin(mu), (4, 8) = cos(mu), (5, 1) = cosh(mu*x), (5, 2) = sinh(mu*x), (5, 3) = -cos(mu*x), (5, 4) = -sin(mu*x), (5, 5) = -cosh(mu*x), (5, 6) = -sinh(mu*x), (5, 7) = cos(mu*x), (5, 8) = sin(mu*x), (6, 1) = -sinh(mu*x), (6, 2) = -cosh(mu*x), (6, 3) = -sin(mu*x), (6, 4) = cos(mu*x), (6, 5) = sinh(mu*x), (6, 6) = cosh(mu*x), (6, 7) = sin(mu*x), (6, 8) = -cos(mu*x), (7, 1) = (EI*sinh(mu*x)*c8*mu^3-cosh(mu*x)*L^3)/L^3, (7, 2) = (EI*cosh(mu*x)*c8*mu^3-sinh(mu*x)*L^3)/L^3, (7, 3) = (EI*sin(mu*x)*c8*mu^3-L^3*cos(mu*x))/L^3, (7, 4) = (-EI*cos(mu*x)*c8*mu^3-sin(mu*x)*L^3)/L^3, (7, 5) = cosh(mu*x), (7, 6) = sinh(mu*x), (7, 7) = cos(mu*x), (7, 8) = sin(mu*x), (8, 1) = (-EI*cosh(mu*x)*c44*mu^2-L*sinh(mu*x)*mu)/L^2, (8, 2) = (-EI*sinh(mu*x)*c44*mu^2-L*cosh(mu*x)*mu)/L^2, (8, 3) = (EI*cos(mu*x)*c44*mu^2+L*sin(mu*x)*mu)/L^2, (8, 4) = (EI*sin(mu*x)*c44*mu^2-L*cos(mu*x)*mu)/L^2, (8, 5) = sinh(mu*x)*mu/L, (8, 6) = cosh(mu*x)*mu/L, (8, 7) = -sin(mu*x)*mu/L, (8, 8) = cos(mu*x)*mu/L})

(35)

Program end

 

NULL

 

``


 

Download Vibration_of_a_cracked_composite_beam.mwVibration_of_a_cracked_composite_beam.mwVibration_of_a_cracked_composite_beam.mw

 

How I can substitute Eqs1-16) into Eq (17)?

Should I use subs rule?

Thanks 

 

 

A few seconds after calling up Help starts zucking araound and the whole computer then freezes. Ctrl-Alt-Delete doesn't work, hard reset required. Very funny. Am I alone?

Hi

I'm trying to export a file using the .mw file. without a lot of success. Can someone help?

For 1 game, the output is between (8) and (9).

For 2 games. the output is after (17).

TEST.mw

 

How to find 
x=log(6) in maple

First 617 618 619 620 621 622 623 Last Page 619 of 2218