MaplePrimes Questions

Maple gives the integral's face instead of giving a number as the numerical integration, no matter what command for the numerical integration I use. Does any one know what the problem is?

T2start := -5.036645000*10^9*(x[5]^2+.2725890432*x[5]+.3732640349)*x[5]/(5.036645000*10^9*x[5]^2+1.27004241*10^8*x[5]+5.3714241*10^7); 
T2end := -5.036645000*10^9*(x[5]^2+.2871403962*x[5]+.3945934083)*x[5]/(5.036645000*10^9*x[5]^2+1.27004241*10^8*x[5]+5.3714241*10^7);
J := (25183225000000*x[5]^4+(-100732900000000*T[2]+73827142410000)*x[5]^3+(-112645777230000*T[2]+662242877289)*x[5]^2-2398770574578*T[2]*x[5]-393671672289*T[2])/(10000000*x[5]^2+14658000*x[5]);
int(abs(J), [T[2] = T2start .. T2end, x[5] = 0 .. infinity], numeric);

I also used the following.

evalf(Int(abs(J), [T[2] = T2start .. T2end, x[5] = 0 .. infinity]));

The result was same.

Or when I use

evalf(Int(abs(J), [T[2] = T2start .. T2end, x[5] = 0 .. infinity], method = _MonteCarlo));

It gives an error saying:

Error, (in evalf/int) invalid arguments

Wus poppin Jimbos

My function is as follows:

f(x)=(10000/1+30762*0.478^x)+5

I can then type 

maximize(f'(x))

And I get the result which is approximately 1845.361367

I then assign at a name e.g. "M"

I then try and execute the command (where I isolate the expression for x)

f'(x)=M

I get the result

 
              x = 14.00001597 - 0.00005369289477 I

Which is super annoying to look at..

Is there any way that I can remove the - 0.00005369289477 I part? And just get the answer (which should be 14)

I have no problem executing 

diff(f(x), x) = 1845.361366;
 = 
                             "(->)"

                        x = 13.99997555

However 1845.361367 once again gives me x = 14.00001597 - 0.00005369289477 I

Any help is appreciated <3

Is it a complete set ? How to search matrix?

When I tried to execute one of my opened worksheets, the "execute the entire worksheet button" became unactive for the others. I am pretty sure there was an option to execute multiple worksheets in Maple 14. Did the developers remove that in newer versions?

u:=(x,t)->Sum(sin(r*Pi*x/20)*(4/(r^2*Pi^2))*sin(r*pi/2)*cos(r*Pi*t/20),r=1...1000);

plot3d(u(x,t),x=0...10,t=0...1);

When I want to draw the graph, it gives a straight line. But this is a wave equation

I am trying to calculate log[1/3](x)-log[sqrt(3)](x^2)+log[x](9) with log[3](x) = a.
I tried:

restart;
sol := solve(log[3](x) = a, x);
f :=x->log[1/3](x)-log[sqrt(3)](x^2)+log[x](9) ;
simplify(f(sol))


I don't get the answer (2-5a^2)/a.

How can I get that answer?

hi

i want to solve a example in this picture but i get error. 

thanks

1.mw

example

Hey, this is not the I've had this encounter. I want to open this saved document but when I open it and Maple starts up it just hits me with "A problem was encountered while opening the workbook. Database is not opened". How can I get to open it properly and see my math notes?

How can this be prevented?

Any help?

 

Christian

Hi.

 

When I try to solve the equation 15-1/100M=5+1/600M. The result in maple is 7/6000. But the “real” result according to other calculating programs is 6000/7. Is there a setting that is causing this to happen?

The Fourier series of waveforms with discontinuties experiences an overshoot near the discontinuity known as the "Gibbs phenomenon".  There is quite a bit of literature showing that the overshoot for a rectangle function is ~ 1.089.  What about other functions such as (1-x) or a decaying exponential for x positive?  Is there any reason to expect the overshoot ratio to be identical to the rectangle function?  I do know for a fact that the behavior of the overshoot is different for the triangle function (1-x) than for the rectangle function.  For low harmonics there is an undershoot for the triangle function case, but this is not the case for the rectangle function.  The overshoot occurs for the triangle function after a sufficient number of terms are included in the Fourier series.  The same is true for the decaying exponential.  This is illustrated in my worksheet linked below.

GIBBS_effect.mw

Does anyone know of MAPLE code that computes the theoretical overshoot if there is an infinite number of terms in the series for different waveforms or functions?

So I have the following:

restart;
with(Physics):
Setup(mathematicalnotation=true,coordinatesystems=cartesian);
Define(A[mu](X));

First of all X ist defined in terms of (x,y,z,t). Is is also possible to define it in terms of (t,x,y,z) with t being mu=0.

When I do

alias(X=(t,x,y,z))

this applies only to this one vector and

d_[4] is still the time differentiation, right?

 

Then I wanted to construct the divergence

d_[`~mu`] A[mu](X);
TensorArray(%,performsumoverrepeatedindices=true);

 

This should give me sth like d1 A1 + ... + d4 A4, but it stays with d_mu A_mu ?!?

Why?

Is there also a "function" which does the contraction?

So if I have

f[mu,nu]=d_[mu] A[nu](X)

eval(f[mu,nu],nu=mu)

contract(%)

??

evalf(Int(x*(1-2*x^(3/10))^(10./3),x=0..1));  # Crashes Maple

Note that:

int(x*(1-2*x^(3/10))^(10./3),x=0..1);
int(x*(1-2*x^(3/10))^(10/3),x=0..1);

are OK.

(Windows 7, Maple 2017.3, 64 bit)

lambda:=unapply(5*Pi*sqrt((m^2)/16+(n^2)/4),m,n):'lambda[m,n]'=lambda(m,n);
                     
 u:=(x,y,t)->0.426050*sum(sum((1/(m^3*n^3))*cos(lambda*t)*sin(m*Pi*x/4)*sin(n*Pi*y/2),m=1..infinity),n=1...infinity);
 
lambda value depends on m and n. m and n are odd numbers. We write 2 * m-1 and 2 * n-1 instead of m and n. x = 0: 0.01: 4 and y = 0: 0.01: 2 and t = 0.01.
How can I draw a 3D plot?
Where do we  write 0.01 in increments of amount?   in the Grid command?Or how do we plot for the direct x = 0 ... 4 and y = 0 .... 2 and t = 0.01?
 

Hi everyone,

I'm looking for some way to simplify the following procedure:

 

scm := proc(X, x) global xx;

if 1 <= X and X < 10 then xx := cat(x)

elif 10 <= X and X < 100 then if 1 <= x and x < 10 then xx := cat(0, x) else xx := cat(x) end if

elif 100 <= X and X < 1000 then if 1 <= x and x < 10 then xx := cat(0, 0, x) elif 10 <= x and x < 100 then xx := cat(0, x) else xx := cat(x) end if

elif 1000 <= X and X < 10000 then if 1 <= x and x < 10 then xx := cat(0, 0, 0, x) elif 10 <= x and x < 100 then xx := cat(0, 0, x) elif 100 <= x and x < 1000 then xx := cat(0, x) else xx := cat(x) end if

elif 10000 <= X and X < 100000 then if 1 <= x and x < 10 then xx := cat(0, 0, 0, 0, x) elif 10 <= x and x < 100 then xx := cat(0, 0, 0, x) elif 100 <= x and x < 1000 then xx := cat(0, 0, x) elif 1000 <= x and x < 10000 then xx := cat(0, x) else xx := cat(x) end if

end if

end proc

 

Any tips? Thank you in advance.

Hi 

I want to solve these equations in MAPLE, but something goes wrong. 


 

``

restart

``

NULL

NULL

NULL

phi[j] := sin(j*Pi*x)

sin(j*Pi*x)

(1)

phi[i] := sin(i*Pi*x)

sin(i*Pi*x)

(2)

phi[k] := sin(k*Pi*x)

sin(k*Pi*x)

(3)

phi[l] := sin(l*Pi*x)

sin(l*Pi*x)

(4)

phi[1] := sin(Pi*x)

sin(Pi*x)

(5)

NULL

pp1 := sum((int(phi[i]*phi[j], x = 0 .. 1, numeric))*(diff(p(t), t, t))[j], j = 1 .. 8)-beta^2*(sum((int(phi[i]*(diff(phi[j], x, x)), x = 0 .. 1, numeric))*p(t)[j], j = 1 .. 8)+sum((int(AA0*(diff(phi[1], x, x))*phi[i]*(diff(phi[j], x)), x = 0 .. 1, numeric))*q[j], j = 1 .. 7)+sum((int(AA0*(diff(phi[1], x))*phi[i]*(diff(phi[j], x, x)), x = 0 .. 1, numeric))*q[j], j = 1 .. 7)+sum(sum((int(phi[i]*(diff(phi[j], x))*(diff(phi[k], x, x)), x = 0 .. 1, numeric))*q[j]*q[k], k = 1 .. 7), j = 1 .. 7))+Cd*(sum((int(phi[i]*phi[j], x = 0 .. 1, numeric))*(diff(p(t), t))[j], j = 1 .. 8)):

NULL

NULL

NULL

for z to 8 do limit(pp1, i = z) end do

limit(.1591549431*(sin(3.141592654*i-3.141592654)*i-1.*sin(3.141592654*i+3.141592654)*i+sin(3.141592654*i-3.141592654)+sin(3.141592654*i+3.141592654))*(diff(diff(p(t), t), t))[1]/((i-1.)*(i+1.))+.1591549431*(sin(3.141592654*i-6.283185308)*i-1.*sin(3.141592654*i+6.283185308)*i+2.*sin(3.141592654*i-6.283185308)+2.*sin(3.141592654*i+6.283185308))*(diff(diff(p(t), t), t))[2]/((i-2.)*(i+2.))+.1591549431*(sin(3.141592654*i-9.424777962)*i-1.*sin(3.141592654*i+9.424777962)*i+3.*sin(3.141592654*i-9.424777962)+3.*sin(3.141592654*i+9.424777962))*(diff(diff(p(t), t), t))[3]/((i-3.)*(i+3.))+.1591549431*(sin(3.141592654*i-12.56637062)*i-1.*sin(3.141592654*i+12.56637062)*i+4.*sin(3.141592654*i-12.56637062)+4.*sin(3.141592654*i+12.56637062))*(diff(diff(p(t), t), t))[4]/((i-4.)*(i+4.))+.1591549431*(sin(3.141592654*i-15.70796327)*i-1.*sin(3.141592654*i+15.70796327)*i+5.*sin(3.141592654*i-15.70796327)+5.*sin(3.141592654*i+15.70796327))*(diff(diff(p(t), t), t))[5]/((i-5.)*(i+5.))+.1591549431*(sin(3.141592654*i-18.84955592)*i-1.*sin(3.141592654*i+18.84955592)*i+6.*sin(3.141592654*i-18.84955592)+6.*sin(3.141592654*i+18.84955592))*(diff(diff(p(t), t), t))[6]/((i-6.)*(i+6.))+.1591549431*(sin(3.141592654*i-21.99114858)*i-1.*sin(3.141592654*i+21.99114858)*i+7.*sin(3.141592654*i-21.99114858)+7.*sin(3.141592654*i+21.99114858))*(diff(diff(p(t), t), t))[7]/((i-7.)*(i+7.))+.1591549431*(sin(3.141592654*i-25.13274123)*i-1.*sin(3.141592654*i+25.13274123)*i+8.*sin(3.141592654*i-25.13274123)+8.*sin(3.141592654*i+25.13274123))*(diff(diff(p(t), t), t))[8]/((i-8.)*(i+8.))-beta^2*(-1.570796327*(sin(3.141592654*i-3.141592654)*i-1.*sin(3.141592654*i+3.141592654)*i+sin(3.141592654*i-3.141592654)+sin(3.141592654*i+3.141592654))*p(t)[1]/((i-1.)*(i+1.))-6.283185308*(sin(3.141592654*i-6.283185308)*i-1.*sin(3.141592654*i+6.283185308)*i+2.*sin(3.141592654*i-6.283185308)+2.*sin(3.141592654*i+6.283185308))*p(t)[2]/((i-2.)*(i+2.))-14.13716694*(sin(3.141592654*i-9.424777962)*i-1.*sin(3.141592654*i+9.424777962)*i+3.*sin(3.141592654*i-9.424777962)+3.*sin(3.141592654*i+9.424777962))*p(t)[3]/((i-3.)*(i+3.))-25.13274123*(sin(3.141592654*i-12.56637062)*i-1.*sin(3.141592654*i+12.56637062)*i+4.*sin(3.141592654*i-12.56637062)+4.*sin(3.141592654*i+12.56637062))*p(t)[4]/((i-4.)*(i+4.))-39.26990818*(sin(3.141592654*i-15.70796327)*i-1.*sin(3.141592654*i+15.70796327)*i+5.*sin(3.141592654*i-15.70796327)+5.*sin(3.141592654*i+15.70796327))*p(t)[5]/((i-5.)*(i+5.))-56.54866777*(sin(3.141592654*i-18.84955592)*i-1.*sin(3.141592654*i+18.84955592)*i+6.*sin(3.141592654*i-18.84955592)+6.*sin(3.141592654*i+18.84955592))*p(t)[6]/((i-6.)*(i+6.))-76.96902003*(sin(3.141592654*i-21.99114858)*i-1.*sin(3.141592654*i+21.99114858)*i+7.*sin(3.141592654*i-21.99114858)+7.*sin(3.141592654*i+21.99114858))*p(t)[7]/((i-7.)*(i+7.))-100.5309649*(sin(3.141592654*i-25.13274123)*i-1.*sin(3.141592654*i+25.13274123)*i+8.*sin(3.141592654*i-25.13274123)+8.*sin(3.141592654*i+25.13274123))*p(t)[8]/((i-8.)*(i+8.))-66.61982973*(sin(3.141592654*i-18.84955592)*i^3-1.*sin(3.141592654*i+18.84955592)*i^3+6.*sin(3.141592654*i-18.84955592)*i^2+6.*sin(3.141592654*i+18.84955592)*i^2)*q[3]^2/(i^2*(i+6.)*(i-6.))-157.9136704*(-64.*sin(-0.4000000000e-8+3.141592654*i)*i+64.*sin(0.4000000000e-8+3.141592654*i)*i+sin(-0.4000000000e-8+3.141592654*i)*i^3-1.*sin(25.13274124+3.141592654*i)*i^3+sin(-25.13274124+3.141592654*i)*i^3-1.*sin(0.4000000000e-8+3.141592654*i)*i^3+8.*sin(25.13274124+3.141592654*i)*i^2+8.*sin(-25.13274124+3.141592654*i)*i^2)*q[4]^2/(i^2*(i+8.)*(i-8.))+308.4251376*(-10.*sin(31.41592654+3.141592654*i)*i^2-10.*sin(-31.41592654+3.141592654*i)*i^2+sin(31.41592654+3.141592654*i)*i^3-1.*sin(-31.41592654+3.141592654*i)*i^3)*q[5]^2/(i^2*(10.+i)*(-10.+i))-532.9586378*(144.*sin(-0.4000000000e-8+3.141592654*i)*i-144.*sin(0.4000000000e-8+3.141592654*i)*i-1.*sin(-0.4000000000e-8+3.141592654*i)*i^3+sin(0.4000000000e-8+3.141592654*i)*i^3-1.*sin(37.69911184+3.141592654*i)*i^3+sin(-37.69911184+3.141592654*i)*i^3+12.*sin(37.69911184+3.141592654*i)*i^2+12.*sin(-37.69911184+3.141592654*i)*i^2)*q[6]^2/(i^2*(12.+i)*(-12.+i))-846.3185773*(sin(-43.98229716+3.141592654*i)*i^3-1.*sin(0.2000000000e-8+3.141592654*i)*i^3+14.*sin(43.98229716+3.141592654*i)*i^2+14.*sin(-43.98229716+3.141592654*i)*i^2-196.*sin(-0.2000000000e-8+3.141592654*i)*i+196.*sin(0.2000000000e-8+3.141592654*i)*i+sin(-0.2000000000e-8+3.141592654*i)*i^3-1.*sin(43.98229716+3.141592654*i)*i^3)*q[7]^2/(i^2*(14.+i)*(-14.+i))-19.73920881*(sin(3.141592654*i-12.56637062)*i^3-1.*sin(3.141592654*i+12.56637062)*i^3+4.*sin(3.141592654*i-12.56637062)*i^2+4.*sin(3.141592654*i+12.56637062)*i^2)*q[2]^2/(i^2*(i+4.)*(i-4.))-4.934802202*AA0*(sin(3.141592654*i-6.283185308)*i-1.*sin(3.141592654*i+6.283185308)*i+2.*sin(3.141592654*i-6.283185308)+2.*sin(3.141592654*i+6.283185308))*q[1]/((i-2.)*(i+2.))-2.467401101*(sin(3.141592654*i-6.283185308)*i^3-1.*sin(3.141592654*i+6.283185308)*i^3+2.*sin(3.141592654*i-6.283185308)*i^2+2.*sin(3.141592654*i+6.283185308)*i^2)*q[1]^2/(i^2*(i+2.)*(i-2.))-9.869604403*(sin(3.141592654*i-9.424777962)*i^3-1.*sin(3.141592654*i+3.141592654)*i^3+sin(3.141592654*i-3.141592654)*i^3-1.*sin(3.141592654*i+9.424777962)*i^3+3.*sin(3.141592654*i-9.424777962)*i^2+sin(3.141592654*i+3.141592654)*i^2+sin(3.141592654*i-3.141592654)*i^2+3.*sin(3.141592654*i+9.424777962)*i^2-1.*sin(3.141592654*i-9.424777962)*i+9.*sin(3.141592654*i+3.141592654)*i-9.*sin(3.141592654*i-3.141592654)*i+sin(3.141592654*i+9.424777962)*i-3.*sin(3.141592654*i-9.424777962)-9.*sin(3.141592654*i+3.141592654)-9.*sin(3.141592654*i-3.141592654)-3.*sin(3.141592654*i+9.424777962))*q[1]*q[2]/((i-1.)*(i+3.)*(i-3.)*(i+1.))-22.20660991*(sin(3.141592654*i-12.56637062)*i^3-1.*sin(3.141592654*i+12.56637062)*i^3+sin(3.141592654*i-6.283185308)*i^3-1.*sin(3.141592654*i+6.283185308)*i^3+4.*sin(3.141592654*i-12.56637062)*i^2+4.*sin(3.141592654*i+12.56637062)*i^2+2.*sin(3.141592654*i-6.283185308)*i^2+2.*sin(3.141592654*i+6.283185308)*i^2-4.*sin(3.141592654*i-12.56637062)*i+4.*sin(3.141592654*i+12.56637062)*i-16.*sin(3.141592654*i-6.283185308)*i+16.*sin(3.141592654*i+6.283185308)*i-16.*sin(3.141592654*i-12.56637062)-16.*sin(3.141592654*i+12.56637062)-32.*sin(3.141592654*i-6.283185308)-32.*sin(3.141592654*i+6.283185308))*q[1]*q[3]/((i-2.)*(i+4.)*(i-4.)*(i+2.))-39.47841761*(-25.*sin(-9.424777966+3.141592654*i)*i+9.*sin(3.141592654*i+15.70796327)*i-9.*sin(3.141592654*i-15.70796327)*i+25.*sin(9.424777966+3.141592654*i)*i+sin(-9.424777966+3.141592654*i)*i^3-1.*sin(3.141592654*i+15.70796327)*i^3+sin(3.141592654*i-15.70796327)*i^3-1.*sin(9.424777966+3.141592654*i)*i^3+3.*sin(-9.424777966+3.141592654*i)*i^2+5.*sin(3.141592654*i+15.70796327)*i^2+5.*sin(3.141592654*i-15.70796327)*i^2+3.*sin(9.424777966+3.141592654*i)*i^2-45.*sin(3.141592654*i+15.70796327)-45.*sin(3.141592654*i-15.70796327)-75.*sin(9.424777966+3.141592654*i)-75.*sin(-9.424777966+3.141592654*i))*q[1]*q[4]/((i-3.)*(i+5.)*(i-5.)*(i+3.))+61.68502752*(-1.*sin(3.141592654*i-18.84955592)*i^3+sin(3.141592654*i+18.84955592)*i^3-6.*sin(3.141592654*i-18.84955592)*i^2-6.*sin(3.141592654*i+18.84955592)*i^2+96.*sin(3.141592654*i-18.84955592)+96.*sin(3.141592654*i+18.84955592)+16.*sin(3.141592654*i-18.84955592)*i-16.*sin(3.141592654*i+18.84955592)*i-1.*sin(3.141592654*i-12.56637062)*i^3+sin(3.141592654*i+12.56637062)*i^3-4.*sin(3.141592654*i-12.56637062)*i^2-4.*sin(3.141592654*i+12.56637062)*i^2+144.*sin(3.141592654*i+12.56637062)+144.*sin(3.141592654*i-12.56637062)+36.*sin(3.141592654*i-12.56637062)*i-36.*sin(3.141592654*i+12.56637062)*i)*q[1]*q[5]/((i-4.)*(i+6.)*(i-6.)*(i+4.))-88.82643963*(-49.*sin(3.141592654*i-15.70796327)*i+25.*sin(21.99114857+3.141592654*i)*i-25.*sin(-21.99114857+3.141592654*i)*i+49.*sin(3.141592654*i+15.70796327)*i+sin(3.141592654*i-15.70796327)*i^3-1.*sin(21.99114857+3.141592654*i)*i^3+sin(-21.99114857+3.141592654*i)*i^3-1.*sin(3.141592654*i+15.70796327)*i^3+5.*sin(3.141592654*i-15.70796327)*i^2+7.*sin(21.99114857+3.141592654*i)*i^2+7.*sin(-21.99114857+3.141592654*i)*i^2+5.*sin(3.141592654*i+15.70796327)*i^2-245.*sin(3.141592654*i-15.70796327)-175.*sin(21.99114857+3.141592654*i)-175.*sin(-21.99114857+3.141592654*i)-245.*sin(3.141592654*i+15.70796327))*q[1]*q[6]/((i-5.)*(i+7.)*(i-7.)*(i+5.))-120.9026539*(sin(3.141592654*i-25.13274123)*i^3-1.*sin(18.84955593+3.141592654*i)*i^3+6.*sin(-18.84955593+3.141592654*i)*i^2+8.*sin(3.141592654*i+25.13274123)*i^2+8.*sin(3.141592654*i-25.13274123)*i^2+6.*sin(18.84955593+3.141592654*i)*i^2-64.*sin(-18.84955593+3.141592654*i)*i+36.*sin(3.141592654*i+25.13274123)*i-36.*sin(3.141592654*i-25.13274123)*i+64.*sin(18.84955593+3.141592654*i)*i+sin(-18.84955593+3.141592654*i)*i^3-1.*sin(3.141592654*i+25.13274123)*i^3-384.*sin(18.84955593+3.141592654*i)-384.*sin(-18.84955593+3.141592654*i)-288.*sin(3.141592654*i+25.13274123)-288.*sin(3.141592654*i-25.13274123))*q[1]*q[7]/((i-6.)*(i+8.)*(i-8.)*(i+6.))-69.08723082*(-1.*sin(3.141592654*i-15.70796327)*i^3+sin(3.141592654*i+15.70796327)*i^3-5.*sin(3.141592654*i-15.70796327)*i^2-5.*sin(3.141592654*i+15.70796327)*i^2+405.*sin(3.141592654*i+15.70796327)+405.*sin(3.141592654*i-15.70796327)+81.*sin(3.141592654*i-15.70796327)*i-81.*sin(3.141592654*i+15.70796327)*i+9.*sin(28.27433389+3.141592654*i)*i^2+9.*sin(-28.27433389+3.141592654*i)*i^2+25.*sin(28.27433389+3.141592654*i)*i-25.*sin(-28.27433389+3.141592654*i)*i-1.*sin(28.27433389+3.141592654*i)*i^3+sin(-28.27433389+3.141592654*i)*i^3-225.*sin(-28.27433389+3.141592654*i)-225.*sin(28.27433389+3.141592654*i))*q[7]*q[2]/((i+5.)*(9.+i)*(-9.+i)*(i-5.))-155.4462694*(-1.*sin(3.141592654*i-12.56637062)*i^3+sin(3.141592654*i+12.56637062)*i^3-4.*sin(3.141592654*i-12.56637062)*i^2-4.*sin(3.141592654*i+12.56637062)*i^2+400.*sin(3.141592654*i+12.56637062)+400.*sin(3.141592654*i-12.56637062)+100.*sin(3.141592654*i-12.56637062)*i-100.*sin(3.141592654*i+12.56637062)*i+10.*sin(31.41592654+3.141592654*i)*i^2+10.*sin(-31.41592654+3.141592654*i)*i^2+16.*sin(31.41592654+3.141592654*i)*i-16.*sin(-31.41592654+3.141592654*i)*i-1.*sin(31.41592654+3.141592654*i)*i^3+sin(-31.41592654+3.141592654*i)*i^3-160.*sin(31.41592654+3.141592654*i)-160.*sin(-31.41592654+3.141592654*i))*q[7]*q[3]/((i+4.)*(10.+i)*(-10.+i)*(i-4.))-276.3489233*(121.*sin(-9.424777958+3.141592654*i)*i-121.*sin(9.424777958+3.141592654*i)*i-1.*sin(-9.424777958+3.141592654*i)*i^3+sin(9.424777958+3.141592654*i)*i^3-3.*sin(-9.424777958+3.141592654*i)*i^2-3.*sin(9.424777958+3.141592654*i)*i^2+9.*sin(34.55751920+3.141592654*i)*i-9.*sin(-34.55751920+3.141592654*i)*i-1.*sin(34.55751920+3.141592654*i)*i^3+sin(-34.55751920+3.141592654*i)*i^3+11.*sin(34.55751920+3.141592654*i)*i^2+11.*sin(-34.55751920+3.141592654*i)*i^2-99.*sin(34.55751920+3.141592654*i)-99.*sin(-34.55751920+3.141592654*i)+363.*sin(-9.424777958+3.141592654*i)+363.*sin(9.424777958+3.141592654*i))*q[7]*q[4]/((i+3.)*(11.+i)*(-11.+i)*(i-3.))+431.7951926*(sin(3.141592654*i-6.283185308)*i^3-1.*sin(3.141592654*i+6.283185308)*i^3+2.*sin(3.141592654*i-6.283185308)*i^2+2.*sin(3.141592654*i+6.283185308)*i^2-288.*sin(3.141592654*i+6.283185308)-288.*sin(3.141592654*i-6.283185308)+144.*sin(3.141592654*i+6.283185308)*i-144.*sin(3.141592654*i-6.283185308)*i-12.*sin(37.69911185+3.141592654*i)*i^2-12.*sin(-37.69911185+3.141592654*i)*i^2-4.*sin(37.69911185+3.141592654*i)*i+4.*sin(-37.69911185+3.141592654*i)*i+sin(37.69911185+3.141592654*i)*i^3-1.*sin(-37.69911185+3.141592654*i)*i^3+48.*sin(-37.69911185+3.141592654*i)+48.*sin(37.69911185+3.141592654*i))*q[7]*q[5]/((i+2.)*(12.+i)*(-12.+i)*(i-2.))-4.934802201*AA0*(sin(3.141592654*i-9.424777962)*i^3+sin(3.141592654*i+3.141592654)*i^3-1.*sin(3.141592654*i-3.141592654)*i^3-1.*sin(3.141592654*i+9.424777962)*i^3+3.*sin(3.141592654*i-9.424777962)*i^2-1.*sin(3.141592654*i+3.141592654)*i^2-1.*sin(3.141592654*i-3.141592654)*i^2+3.*sin(3.141592654*i+9.424777962)*i^2-1.*sin(3.141592654*i-9.424777962)*i-9.*sin(3.141592654*i+3.141592654)*i+9.*sin(3.141592654*i-3.141592654)*i+sin(3.141592654*i+9.424777962)*i-3.*sin(3.141592654*i-9.424777962)+9.*sin(3.141592654*i+3.141592654)+9.*sin(3.141592654*i-3.141592654)-3.*sin(3.141592654*i+9.424777962))*q[2]/((i-3.)*(i+1.)*(i-1.)*(i+3.))-7.402203302*AA0*(-1.*sin(3.141592654*i-6.283185308)*i^3+sin(3.141592654*i+6.283185308)*i^3+sin(3.141592654*i-12.56637062)*i^3-1.*sin(3.141592654*i+12.56637062)*i^3-2.*sin(3.141592654*i-6.283185308)*i^2-2.*sin(3.141592654*i+6.283185308)*i^2+4.*sin(3.141592654*i-12.56637062)*i^2+4.*sin(3.141592654*i+12.56637062)*i^2+16.*sin(3.141592654*i-6.283185308)*i-16.*sin(3.141592654*i+6.283185308)*i-4.*sin(3.141592654*i-12.56637062)*i+4.*sin(3.141592654*i+12.56637062)*i+32.*sin(3.141592654*i-6.283185308)+32.*sin(3.141592654*i+6.283185308)-16.*sin(3.141592654*i-12.56637062)-16.*sin(3.141592654*i+12.56637062))*q[3]/((i-4.)*(i+2.)*(i-2.)*(i+4.))+9.869604403*AA0*(sin(3.141592654*i-9.424777962)*i^3-1.*sin(3.141592654*i+9.424777962)*i^3-1.*sin(3.141592654*i-15.70796327)*i^3+sin(3.141592654*i+15.70796327)*i^3+3.*sin(3.141592654*i-9.424777962)*i^2+3.*sin(3.141592654*i+9.424777962)*i^2-5.*sin(3.141592654*i-15.70796327)*i^2-5.*sin(3.141592654*i+15.70796327)*i^2-25.*sin(3.141592654*i-9.424777962)*i+25.*sin(3.141592654*i+9.424777962)*i+9.*sin(3.141592654*i-15.70796327)*i-9.*sin(3.141592654*i+15.70796327)*i-75.*sin(3.141592654*i-9.424777962)-75.*sin(3.141592654*i+9.424777962)+45.*sin(3.141592654*i-15.70796327)+45.*sin(3.141592654*i+15.70796327))*q[4]/((i-5.)*(i+3.)*(i-3.)*(i+5.))-12.33700550*AA0*(sin(3.141592654*i-18.84955592)*i^3-1.*sin(3.141592654*i+18.84955592)*i^3-1.*sin(3.141592654*i-12.56637062)*i^3+sin(3.141592654*i+12.56637062)*i^3+6.*sin(3.141592654*i-18.84955592)*i^2+6.*sin(3.141592654*i+18.84955592)*i^2-4.*sin(3.141592654*i-12.56637062)*i^2-4.*sin(3.141592654*i+12.56637062)*i^2-16.*sin(3.141592654*i-18.84955592)*i+16.*sin(3.141592654*i+18.84955592)*i+36.*sin(3.141592654*i-12.56637062)*i-36.*sin(3.141592654*i+12.56637062)*i-96.*sin(3.141592654*i-18.84955592)-96.*sin(3.141592654*i+18.84955592)+144.*sin(3.141592654*i-12.56637062)+144.*sin(3.141592654*i+12.56637062))*q[5]/((i-6.)*(i+4.)*(i-4.)*(i+6.))-14.80440660*AA0*(sin(3.141592654*i-21.99114858)*i^3-1.*sin(3.141592654*i+21.99114858)*i^3-1.*sin(3.141592654*i-15.70796327)*i^3+sin(3.141592654*i+15.70796327)*i^3+7.*sin(3.141592654*i-21.99114858)*i^2+7.*sin(3.141592654*i+21.99114858)*i^2-5.*sin(3.141592654*i-15.70796327)*i^2-5.*sin(3.141592654*i+15.70796327)*i^2-25.*sin(3.141592654*i-21.99114858)*i+25.*sin(3.141592654*i+21.99114858)*i+49.*sin(3.141592654*i-15.70796327)*i-49.*sin(3.141592654*i+15.70796327)*i-175.*sin(3.141592654*i-21.99114858)-175.*sin(3.141592654*i+21.99114858)+245.*sin(3.141592654*i-15.70796327)+245.*sin(3.141592654*i+15.70796327))*q[6]/((i-7.)*(i+5.)*(i-5.)*(i+7.))+17.27180770*AA0*(sin(3.141592654*i-18.84955592)*i^3-1.*sin(3.141592654*i+18.84955592)*i^3-1.*sin(3.141592654*i-25.13274123)*i^3+sin(3.141592654*i+25.13274123)*i^3+6.*sin(3.141592654*i-18.84955592)*i^2+6.*sin(3.141592654*i+18.84955592)*i^2-8.*sin(3.141592654*i-25.13274123)*i^2-8.*sin(3.141592654*i+25.13274123)*i^2-64.*sin(3.141592654*i-18.84955592)*i+64.*sin(3.141592654*i+18.84955592)*i+36.*sin(3.141592654*i-25.13274123)*i-36.*sin(3.141592654*i+25.13274123)*i-384.*sin(3.141592654*i-18.84955592)-384.*sin(3.141592654*i+18.84955592)+288.*sin(3.141592654*i-25.13274123)+288.*sin(3.141592654*i+25.13274123))*q[7]/((i-8.)*(i+6.)*(i-6.)*(i+8.))-621.7850774*(169.*sin(-3.141592658+3.141592654*i)*i-169.*sin(3.141592658+3.141592654*i)*i-1.*sin(-3.141592658+3.141592654*i)*i^3+sin(3.141592658+3.141592654*i)*i^3-1.*sin(-3.141592658+3.141592654*i)*i^2-1.*sin(3.141592658+3.141592654*i)*i^2+sin(40.84070450+3.141592654*i)*i-1.*sin(-40.84070450+3.141592654*i)*i-1.*sin(40.84070450+3.141592654*i)*i^3+sin(-40.84070450+3.141592654*i)*i^3+13.*sin(40.84070450+3.141592654*i)*i^2+13.*sin(-40.84070450+3.141592654*i)*i^2-13.*sin(-40.84070450+3.141592654*i)-13.*sin(40.84070450+3.141592654*i)+169.*sin(3.141592658+3.141592654*i)+169.*sin(-3.141592658+3.141592654*i))*q[7]*q[6]/((i+1.)*(13.+i)*(-13.+i)*(i-1.))-133.2396595*(-1.*sin(3.141592654*i-9.424777962)*i^3+sin(3.141592654*i+9.424777962)*i^3-3.*sin(3.141592654*i-9.424777962)*i^2-3.*sin(3.141592654*i+9.424777962)*i^2+9.*sin(28.27433389+3.141592654*i)*i^2+9.*sin(-28.27433389+3.141592654*i)*i^2+9.*sin(28.27433389+3.141592654*i)*i-9.*sin(-28.27433389+3.141592654*i)*i-1.*sin(28.27433389+3.141592654*i)*i^3+sin(-28.27433389+3.141592654*i)*i^3+243.*sin(3.141592654*i+9.424777962)+243.*sin(3.141592654*i-9.424777962)+81.*sin(3.141592654*i-9.424777962)*i-81.*sin(3.141592654*i+9.424777962)*i-81.*sin(-28.27433389+3.141592654*i)-81.*sin(28.27433389+3.141592654*i))*q[6]*q[3]/((i+3.)*(9.+i)*(-9.+i)*(i-3.))-236.8705057*(100.*sin(-6.283185304+3.141592654*i)*i-100.*sin(6.283185304+3.141592654*i)*i-1.*sin(-6.283185304+3.141592654*i)*i^3+sin(6.283185304+3.141592654*i)*i^3-2.*sin(-6.283185304+3.141592654*i)*i^2-2.*sin(6.283185304+3.141592654*i)*i^2+4.*sin(31.41592654+3.141592654*i)*i-4.*sin(-31.41592654+3.141592654*i)*i-1.*sin(31.41592654+3.141592654*i)*i^3+sin(-31.41592654+3.141592654*i)*i^3+10.*sin(31.41592654+3.141592654*i)*i^2+10.*sin(-31.41592654+3.141592654*i)*i^2-40.*sin(31.41592654+3.141592654*i)-40.*sin(-31.41592654+3.141592654*i)+200.*sin(6.283185304+3.141592654*i)+200.*sin(-6.283185304+3.141592654*i))*q[6]*q[4]/((i+2.)*(10.+i)*(-10.+i)*(i-2.))+370.1101651*(-1.*sin(3.141592654*i+3.141592654)*i^3+sin(3.141592654*i-3.141592654)*i^3+sin(3.141592654*i+3.141592654)*i^2+sin(3.141592654*i-3.141592654)*i^2-121.*sin(3.141592654*i+3.141592654)+121.*sin(3.141592654*i+3.141592654)*i-121.*sin(3.141592654*i-3.141592654)*i-121.*sin(3.141592654*i-3.141592654)-11.*sin(34.55751919+3.141592654*i)*i^2-11.*sin(-34.55751919+3.141592654*i)*i^2-1.*sin(34.55751919+3.141592654*i)*i+sin(-34.55751919+3.141592654*i)*i+sin(34.55751919+3.141592654*i)*i^3-1.*sin(-34.55751919+3.141592654*i)*i^3+11.*sin(34.55751919+3.141592654*i)+11.*sin(-34.55751919+3.141592654*i))*q[6]*q[5]/((i+1.)*(11.+i)*(-11.+i)*(i-1.))-725.4159234*(sin(-40.84070450+3.141592654*i)*i^3-1.*sin(3.141592656+3.141592654*i)*i^3+sin(-3.141592656+3.141592654*i)*i^2+13.*sin(40.84070450+3.141592654*i)*i^2+13.*sin(-40.84070450+3.141592654*i)*i^2+sin(3.141592656+3.141592654*i)*i^2-169.*sin(-3.141592656+3.141592654*i)*i+sin(40.84070450+3.141592654*i)*i-1.*sin(-40.84070450+3.141592654*i)*i+169.*sin(3.141592656+3.141592654*i)*i+sin(-3.141592656+3.141592654*i)*i^3-1.*sin(40.84070450+3.141592654*i)*i^3-169.*sin(3.141592656+3.141592654*i)-169.*sin(-3.141592656+3.141592654*i)-13.*sin(40.84070450+3.141592654*i)-13.*sin(-40.84070450+3.141592654*i))*q[6]*q[7]/((i-1.)*(13.+i)*(-13.+i)*(i+1.))-17.27180771*(-1.*sin(3.141592654*i-18.84955592)*i^3+sin(3.141592654*i+18.84955592)*i^3-6.*sin(3.141592654*i-18.84955592)*i^2-6.*sin(3.141592654*i+18.84955592)*i^2-288.*sin(3.141592654*i-25.13274123)-288.*sin(3.141592654*i+25.13274123)-36.*sin(3.141592654*i-25.13274123)*i+36.*sin(3.141592654*i+25.13274123)*i+384.*sin(3.141592654*i-18.84955592)+384.*sin(3.141592654*i+18.84955592)+64.*sin(3.141592654*i-18.84955592)*i-64.*sin(3.141592654*i+18.84955592)*i+sin(3.141592654*i-25.13274123)*i^3-1.*sin(3.141592654*i+25.13274123)*i^3+8.*sin(3.141592654*i-25.13274123)*i^2+8.*sin(3.141592654*i+25.13274123)*i^2)*q[7]*q[1]/((i+6.)*(i+8.)*(i-8.)*(i-6.))-12.33700550*(sin(3.141592654*i-18.84955592)*i^3-1.*sin(3.141592654*i+18.84955592)*i^3-1.*sin(3.141592654*i-12.56637062)*i^3+sin(3.141592654*i+12.56637062)*i^3+6.*sin(3.141592654*i-18.84955592)*i^2+6.*sin(3.141592654*i+18.84955592)*i^2-4.*sin(3.141592654*i-12.56637062)*i^2-4.*sin(3.141592654*i+12.56637062)*i^2-16.*sin(3.141592654*i-18.84955592)*i+16.*sin(3.141592654*i+18.84955592)*i+36.*sin(3.141592654*i-12.56637062)*i-36.*sin(3.141592654*i+12.56637062)*i-96.*sin(3.141592654*i-18.84955592)-96.*sin(3.141592654*i+18.84955592)+144.*sin(3.141592654*i-12.56637062)+144.*sin(3.141592654*i+12.56637062))*q[5]*q[1]/((i+4.)*(i+6.)*(i-6.)*(i-4.))-49.34802202*(sin(3.141592654*i-21.99114858)*i^3-1.*sin(3.141592654*i+21.99114858)*i^3+7.*sin(3.141592654*i-21.99114858)*i^2+7.*sin(3.141592654*i+21.99114858)*i^2-63.*sin(3.141592654*i-21.99114858)-63.*sin(3.141592654*i+21.99114858)-9.*sin(3.141592654*i-21.99114858)*i+9.*sin(3.141592654*i+21.99114858)*i-1.*sin(3.141592654*i-9.424777962)*i^3+sin(3.141592654*i+9.424777962)*i^3-3.*sin(3.141592654*i-9.424777962)*i^2-3.*sin(3.141592654*i+9.424777962)*i^2+147.*sin(3.141592654*i+9.424777962)+147.*sin(3.141592654*i-9.424777962)+49.*sin(3.141592654*i-9.424777962)*i-49.*sin(3.141592654*i+9.424777962)*i)*q[5]*q[2]/((i+3.)*(i+7.)*(i-7.)*(i-3.))-111.0330496*(-32.*sin(3.141592654*i-25.13274123)-32.*sin(3.141592654*i+25.13274123)-4.*sin(3.141592654*i-25.13274123)*i+4.*sin(3.141592654*i+25.13274123)*i-1.*sin(3.141592654*i-6.283185308)*i^3+sin(3.141592654*i+6.283185308)*i^3-2.*sin(3.141592654*i-6.283185308)*i^2-2.*sin(3.141592654*i+6.283185308)*i^2+128.*sin(3.141592654*i+6.283185308)+128.*sin(3.141592654*i-6.283185308)-64.*sin(3.141592654*i+6.283185308)*i+64.*sin(3.141592654*i-6.283185308)*i+sin(3.141592654*i-25.13274123)*i^3-1.*sin(3.141592654*i+25.13274123)*i^3+8.*sin(3.141592654*i-25.13274123)*i^2+8.*sin(3.141592654*i+25.13274123)*i^2)*q[5]*q[3]/((i+2.)*(i+8.)*(i-8.)*(i-2.))-197.3920880*(-81.*sin(3.141592650+3.141592654*i)*i+sin(28.27433389+3.141592654*i)*i-1.*sin(-28.27433389+3.141592654*i)*i+81.*sin(-3.141592650+3.141592654*i)*i+sin(3.141592650+3.141592654*i)*i^3-1.*sin(28.27433389+3.141592654*i)*i^3+sin(-28.27433389+3.141592654*i)*i^3-1.*sin(-3.141592650+3.141592654*i)*i^3-1.*sin(3.141592650+3.141592654*i)*i^2+9.*sin(28.27433389+3.141592654*i)*i^2+9.*sin(-28.27433389+3.141592654*i)*i^2-1.*sin(-3.141592650+3.141592654*i)*i^2+81.*sin(-3.141592650+3.141592654*i)+81.*sin(3.141592650+3.141592654*i)-9.*sin(28.27433389+3.141592654*i)-9.*sin(-28.27433389+3.141592654*i))*q[5]*q[4]/((i+1.)*(9.+i)*(-9.+i)*(i-1.))-444.1321982*(121.*sin(3.141592650+3.141592654*i)*i-121.*sin(-3.141592650+3.141592654*i)*i-1.*sin(3.141592650+3.141592654*i)*i^3+sin(-3.141592650+3.141592654*i)*i^3+sin(3.141592650+3.141592654*i)*i^2+sin(-3.141592650+3.141592654*i)*i^2+sin(34.55751919+3.141592654*i)*i-1.*sin(-34.55751919+3.141592654*i)*i-1.*sin(34.55751919+3.141592654*i)*i^3+sin(-34.55751919+3.141592654*i)*i^3+11.*sin(34.55751919+3.141592654*i)*i^2+11.*sin(-34.55751919+3.141592654*i)*i^2-11.*sin(34.55751919+3.141592654*i)-11.*sin(-34.55751919+3.141592654*i)-121.*sin(-3.141592650+3.141592654*i)-121.*sin(3.141592650+3.141592654*i))*q[5]*q[6]/((i-1.)*(11.+i)*(-11.+i)*(i+1.))-39.47841761*AA0*(sin(3.141592654*i-9.424777962)*i^3-1.*sin(3.141592654*i+9.424777962)*i^3+sin(3.141592654*i-15.70796327)*i^3-1.*sin(3.141592654*i+15.70796327)*i^3+3.*sin(3.141592654*i-9.424777962)*i^2+3.*sin(3.141592654*i+9.424777962)*i^2+5.*sin(3.141592654*i-15.70796327)*i^2+5.*sin(3.141592654*i+15.70796327)*i^2-25.*sin(3.141592654*i-9.424777962)*i+25.*sin(3.141592654*i+9.424777962)*i-9.*sin(3.141592654*i-15.70796327)*i+9.*sin(3.141592654*i+15.70796327)*i-75.*sin(3.141592654*i-9.424777962)-75.*sin(3.141592654*i+9.424777962)-45.*sin(3.141592654*i-15.70796327)-45.*sin(3.141592654*i+15.70796327))*q[4]/((i-5.)*(i+3.)*(i-3.)*(i+5.))-61.68502752*AA0*(sin(3.141592654*i-18.84955592)*i^3-1.*sin(3.141592654*i+18.84955592)*i^3+sin(3.141592654*i-12.56637062)*i^3-1.*sin(3.141592654*i+12.56637062)*i^3+6.*sin(3.141592654*i-18.84955592)*i^2+6.*sin(3.141592654*i+18.84955592)*i^2+4.*sin(3.141592654*i-12.56637062)*i^2+4.*sin(3.141592654*i+12.56637062)*i^2-16.*sin(3.141592654*i-18.84955592)*i+16.*sin(3.141592654*i+18.84955592)*i-36.*sin(3.141592654*i-12.56637062)*i+36.*sin(3.141592654*i+12.56637062)*i-96.*sin(3.141592654*i-18.84955592)-96.*sin(3.141592654*i+18.84955592)-144.*sin(3.141592654*i-12.56637062)-144.*sin(3.141592654*i+12.56637062))*q[5]/((i-6.)*(i+4.)*(i-4.)*(i+6.))-88.82643963*AA0*(sin(3.141592654*i-21.99114858)*i^3-1.*sin(3.141592654*i+21.99114858)*i^3+sin(3.141592654*i-15.70796327)*i^3-1.*sin(3.141592654*i+15.70796327)*i^3+7.*sin(3.141592654*i-21.99114858)*i^2+7.*sin(3.141592654*i+21.99114858)*i^2+5.*sin(3.141592654*i-15.70796327)*i^2+5.*sin(3.141592654*i+15.70796327)*i^2-25.*sin(3.141592654*i-21.99114858)*i+25.*sin(3.141592654*i+21.99114858)*i-49.*sin(3.141592654*i-15.70796327)*i+49.*sin(3.141592654*i+15.70796327)*i-175.*sin(3.141592654*i-21.99114858)-175.*sin(3.141592654*i+21.99114858)-245.*sin(3.141592654*i-15.70796327)-245.*sin(3.141592654*i+15.70796327))*q[6]/((i-7.)*(i+5.)*(i-5.)*(i+7.))-120.9026539*AA0*(sin(3.141592654*i-18.84955592)*i^3-1.*sin(3.141592654*i+18.84955592)*i^3+sin(3.141592654*i-25.13274123)*i^3-1.*sin(3.141592654*i+25.13274123)*i^3+6.*sin(3.141592654*i-18.84955592)*i^2+6.*sin(3.141592654*i+18.84955592)*i^2+8.*sin(3.141592654*i-25.13274123)*i^2+8.*sin(3.141592654*i+25.13274123)*i^2-64.*sin(3.141592654*i-18.84955592)*i+64.*sin(3.141592654*i+18.84955592)*i-36.*sin(3.141592654*i-25.13274123)*i+36.*sin(3.141592654*i+25.13274123)*i-384.*sin(3.141592654*i-18.84955592)-384.*sin(3.141592654*i+18.84955592)-288.*sin(3.141592654*i-25.13274123)-288.*sin(3.141592654*i+25.13274123))*q[7]/((i-8.)*(i+6.)*(i-6.)*(i+8.))-9.869604403*AA0*(sin(3.141592654*i-9.424777962)*i^3-1.*sin(3.141592654*i+3.141592654)*i^3+sin(3.141592654*i-3.141592654)*i^3-1.*sin(3.141592654*i+9.424777962)*i^3+3.*sin(3.141592654*i-9.424777962)*i^2+sin(3.141592654*i+3.141592654)*i^2+sin(3.141592654*i-3.141592654)*i^2+3.*sin(3.141592654*i+9.424777962)*i^2-1.*sin(3.141592654*i-9.424777962)*i+9.*sin(3.141592654*i+3.141592654)*i-9.*sin(3.141592654*i-3.141592654)*i+sin(3.141592654*i+9.424777962)*i-3.*sin(3.141592654*i-9.424777962)-9.*sin(3.141592654*i+3.141592654)-9.*sin(3.141592654*i-3.141592654)-3.*sin(3.141592654*i+9.424777962))*q[2]/((i-3.)*(i+1.)*(i-1.)*(i+3.))-22.20660991*AA0*(sin(3.141592654*i-12.56637062)*i^3-1.*sin(3.141592654*i+12.56637062)*i^3+sin(3.141592654*i-6.283185308)*i^3-1.*sin(3.141592654*i+6.283185308)*i^3+4.*sin(3.141592654*i-12.56637062)*i^2+4.*sin(3.141592654*i+12.56637062)*i^2+2.*sin(3.141592654*i-6.283185308)*i^2+2.*sin(3.141592654*i+6.283185308)*i^2-4.*sin(3.141592654*i-12.56637062)*i+4.*sin(3.141592654*i+12.56637062)*i-16.*sin(3.141592654*i-6.283185308)*i+16.*sin(3.141592654*i+6.283185308)*i-16.*sin(3.141592654*i-12.56637062)-16.*sin(3.141592654*i+12.56637062)-32.*sin(3.141592654*i-6.283185308)-32.*sin(3.141592654*i+6.283185308))*q[3]/((i-4.)*(i+2.)*(i-2.)*(i+4.))-604.5132695*(sin(-37.69911185+3.141592654*i)*i^3-1.*sin(6.283185310+3.141592654*i)*i^3+2.*sin(-6.283185310+3.141592654*i)*i^2+12.*sin(37.69911185+3.141592654*i)*i^2+12.*sin(-37.69911185+3.141592654*i)*i^2+2.*sin(6.283185310+3.141592654*i)*i^2-144.*sin(-6.283185310+3.141592654*i)*i+4.*sin(37.69911185+3.141592654*i)*i-4.*sin(-37.69911185+3.141592654*i)*i+144.*sin(6.283185310+3.141592654*i)*i+sin(-6.283185310+3.141592654*i)*i^3-1.*sin(37.69911185+3.141592654*i)*i^3-288.*sin(6.283185310+3.141592654*i)-288.*sin(-6.283185310+3.141592654*i)-48.*sin(37.69911185+3.141592654*i)-48.*sin(-37.69911185+3.141592654*i))*q[5]*q[7]/((i-2.)*(12.+i)*(-12.+i)*(i+2.))-14.80440661*(sin(3.141592654*i-21.99114858)*i^3-1.*sin(3.141592654*i+21.99114858)*i^3-1.*sin(3.141592654*i-15.70796327)*i^3+sin(3.141592654*i+15.70796327)*i^3+7.*sin(3.141592654*i-21.99114858)*i^2+7.*sin(3.141592654*i+21.99114858)*i^2-5.*sin(3.141592654*i-15.70796327)*i^2-5.*sin(3.141592654*i+15.70796327)*i^2-25.*sin(3.141592654*i-21.99114858)*i+25.*sin(3.141592654*i+21.99114858)*i+49.*sin(3.141592654*i-15.70796327)*i-49.*sin(3.141592654*i+15.70796327)*i-175.*sin(3.141592654*i-21.99114858)-175.*sin(3.141592654*i+21.99114858)+245.*sin(3.141592654*i-15.70796327)+245.*sin(3.141592654*i+15.70796327))*q[6]*q[1]/((i+5.)*(i+7.)*(i-7.)*(i-5.))-59.21762642*(-128.*sin(3.141592654*i-25.13274123)-128.*sin(3.141592654*i+25.13274123)-16.*sin(3.141592654*i-25.13274123)*i+16.*sin(3.141592654*i+25.13274123)*i-1.*sin(3.141592654*i-12.56637062)*i^3+sin(3.141592654*i+12.56637062)*i^3-4.*sin(3.141592654*i-12.56637062)*i^2-4.*sin(3.141592654*i+12.56637062)*i^2+256.*sin(3.141592654*i+12.56637062)+256.*sin(3.141592654*i-12.56637062)+64.*sin(3.141592654*i-12.56637062)*i-64.*sin(3.141592654*i+12.56637062)*i+sin(3.141592654*i-25.13274123)*i^3-1.*sin(3.141592654*i+25.13274123)*i^3+8.*sin(3.141592654*i-25.13274123)*i^2+8.*sin(3.141592654*i+25.13274123)*i^2)*q[6]*q[2]/((i+4.)*(i+8.)*(i-8.)*(i-4.))-4.934802202*(sin(3.141592654*i-9.424777962)*i^3+sin(3.141592654*i+3.141592654)*i^3-1.*sin(3.141592654*i-3.141592654)*i^3-1.*sin(3.141592654*i+9.424777962)*i^3+3.*sin(3.141592654*i-9.424777962)*i^2-1.*sin(3.141592654*i+3.141592654)*i^2-1.*sin(3.141592654*i-3.141592654)*i^2+3.*sin(3.141592654*i+9.424777962)*i^2-1.*sin(3.141592654*i-9.424777962)*i-9.*sin(3.141592654*i+3.141592654)*i+9.*sin(3.141592654*i-3.141592654)*i+sin(3.141592654*i+9.424777962)*i-3.*sin(3.141592654*i-9.424777962)+9.*sin(3.141592654*i+3.141592654)+9.*sin(3.141592654*i-3.141592654)-3.*sin(3.141592654*i+9.424777962))*q[2]*q[1]/((i+1.)*(i+3.)*(i-3.)*(i-1.))-44.41321982*(sin(3.141592654*i-15.70796327)*i^3-1.*sin(3.141592654*i+15.70796327)*i^3+5.*sin(3.141592654*i-15.70796327)*i^2+5.*sin(3.141592654*i+15.70796327)*i^2-5.*sin(3.141592654*i+15.70796327)-5.*sin(3.141592654*i-15.70796327)-1.*sin(3.141592654*i-15.70796327)*i+sin(3.141592654*i+15.70796327)*i-1.*sin(3.141592654*i+3.141592654)*i^3+sin(3.141592654*i-3.141592654)*i^3+sin(3.141592654*i+3.141592654)*i^2+sin(3.141592654*i-3.141592654)*i^2-25.*sin(3.141592654*i+3.141592654)+25.*sin(3.141592654*i+3.141592654)*i-25.*sin(3.141592654*i-3.141592654)*i-25.*sin(3.141592654*i-3.141592654))*q[2]*q[3]/((i-1.)*(i+5.)*(i-5.)*(i+1.))-78.95683522*(-36.*sin(-6.283185312+3.141592654*i)*i+4.*sin(18.84955593+3.141592654*i)*i-4.*sin(-18.84955593+3.141592654*i)*i+36.*sin(6.283185312+3.141592654*i)*i+sin(-6.283185312+3.141592654*i)*i^3-1.*sin(18.84955593+3.141592654*i)*i^3+sin(-18.84955593+3.141592654*i)*i^3-1.*sin(6.283185312+3.141592654*i)*i^3+2.*sin(-6.283185312+3.141592654*i)*i^2+6.*sin(18.84955593+3.141592654*i)*i^2+6.*sin(-18.84955593+3.141592654*i)*i^2+2.*sin(6.283185312+3.141592654*i)*i^2-24.*sin(-18.84955593+3.141592654*i)-72.*sin(6.283185312+3.141592654*i)-72.*sin(-6.283185312+3.141592654*i)-24.*sin(18.84955593+3.141592654*i))*q[2]*q[4]/((i-2.)*(i+6.)*(i-6.)*(i+2.))+123.3700550*(-1.*sin(3.141592654*i-21.99114858)*i^3+sin(3.141592654*i+21.99114858)*i^3-7.*sin(3.141592654*i-21.99114858)*i^2-7.*sin(3.141592654*i+21.99114858)*i^2+63.*sin(3.141592654*i-21.99114858)+63.*sin(3.141592654*i+21.99114858)+9.*sin(3.141592654*i-21.99114858)*i-9.*sin(3.141592654*i+21.99114858)*i-1.*sin(3.141592654*i-9.424777962)*i^3+sin(3.141592654*i+9.424777962)*i^3-3.*sin(3.141592654*i-9.424777962)*i^2-3.*sin(3.141592654*i+9.424777962)*i^2+147.*sin(3.141592654*i+9.424777962)+147.*sin(3.141592654*i-9.424777962)+49.*sin(3.141592654*i-9.424777962)*i-49.*sin(3.141592654*i+9.424777962)*i)*q[2]*q[5]/((i-3.)*(i+7.)*(i-7.)*(i+3.))-177.6528793*(-64.*sin(-12.56637061+3.141592654*i)*i+16.*sin(3.141592654*i+25.13274123)*i-16.*sin(3.141592654*i-25.13274123)*i+64.*sin(12.56637061+3.141592654*i)*i+sin(-12.56637061+3.141592654*i)*i^3-1.*sin(3.141592654*i+25.13274123)*i^3+sin(3.141592654*i-25.13274123)*i^3-1.*sin(12.56637061+3.141592654*i)*i^3+4.*sin(-12.56637061+3.141592654*i)*i^2+8.*sin(3.141592654*i+25.13274123)*i^2+8.*sin(3.141592654*i-25.13274123)*i^2+4.*sin(12.56637061+3.141592654*i)*i^2-256.*sin(12.56637061+3.141592654*i)-256.*sin(-12.56637061+3.141592654*i)-128.*sin(3.141592654*i+25.13274123)-128.*sin(3.141592654*i-25.13274123))*q[2]*q[6]/((i-4.)*(i+8.)*(i-8.)*(i+4.))-241.8053078*(sin(-28.27433389+3.141592654*i)*i^3-1.*sin(3.141592654*i+15.70796327)*i^3+5.*sin(3.141592654*i-15.70796327)*i^2+9.*sin(28.27433389+3.141592654*i)*i^2+9.*sin(-28.27433389+3.141592654*i)*i^2+5.*sin(3.141592654*i+15.70796327)*i^2-81.*sin(3.141592654*i-15.70796327)*i+25.*sin(28.27433389+3.141592654*i)*i-25.*sin(-28.27433389+3.141592654*i)*i+81.*sin(3.141592654*i+15.70796327)*i+sin(3.141592654*i-15.70796327)*i^3-1.*sin(28.27433389+3.141592654*i)*i^3-225.*sin(28.27433389+3.141592654*i)-225.*sin(-28.27433389+3.141592654*i)-405.*sin(3.141592654*i+15.70796327)-405.*sin(3.141592654*i-15.70796327))*q[2]*q[7]/((i-5.)*(9.+i)*(-9.+i)*(i+5.))-7.402203303*(-1.*sin(3.141592654*i-6.283185308)*i^3+sin(3.141592654*i+6.283185308)*i^3+sin(3.141592654*i-12.56637062)*i^3-1.*sin(3.141592654*i+12.56637062)*i^3-2.*sin(3.141592654*i-6.283185308)*i^2-2.*sin(3.141592654*i+6.283185308)*i^2+4.*sin(3.141592654*i-12.56637062)*i^2+4.*sin(3.141592654*i+12.56637062)*i^2+16.*sin(3.141592654*i-6.283185308)*i-16.*sin(3.141592654*i+6.283185308)*i-4.*sin(3.141592654*i-12.56637062)*i+4.*sin(3.141592654*i+12.56637062)*i+32.*sin(3.141592654*i-6.283185308)+32.*sin(3.141592654*i+6.283185308)-16.*sin(3.141592654*i-12.56637062)-16.*sin(3.141592654*i+12.56637062))*q[3]*q[1]/((i+2.)*(i+4.)*(i-4.)*(i-2.))-29.60881321*(sin(3.141592654*i-15.70796327)*i^3-1.*sin(3.141592654*i+15.70796327)*i^3+5.*sin(3.141592654*i-15.70796327)*i^2+5.*sin(3.141592654*i+15.70796327)*i^2-5.*sin(3.141592654*i+15.70796327)-5.*sin(3.141592654*i-15.70796327)-1.*sin(3.141592654*i-15.70796327)*i+sin(3.141592654*i+15.70796327)*i+sin(3.141592654*i+3.141592654)*i^3-1.*sin(3.141592654*i-3.141592654)*i^3-1.*sin(3.141592654*i+3.141592654)*i^2-1.*sin(3.141592654*i-3.141592654)*i^2+25.*sin(3.141592654*i+3.141592654)-25.*sin(3.141592654*i+3.141592654)*i+25.*sin(3.141592654*i-3.141592654)*i+25.*sin(3.141592654*i-3.141592654))*q[3]*q[2]/((i+1.)*(i+5.)*(i-5.)*(i-1.))-118.4352528*(-49.*sin(-3.141592658+3.141592654*i)*i+sin(3.141592654*i+21.99114858)*i-1.*sin(3.141592654*i-21.99114858)*i+49.*sin(3.141592658+3.141592654*i)*i+sin(-3.141592658+3.141592654*i)*i^3-1.*sin(3.141592654*i+21.99114858)*i^3+sin(3.141592654*i-21.99114858)*i^3-1.*sin(3.141592658+3.141592654*i)*i^3+sin(-3.141592658+3.141592654*i)*i^2+7.*sin(3.141592654*i+21.99114858)*i^2+7.*sin(3.141592654*i-21.99114858)*i^2+sin(3.141592658+3.141592654*i)*i^2-7.*sin(3.141592654*i+21.99114858)-7.*sin(3.141592654*i-21.99114858)-49.*sin(3.141592658+3.141592654*i)-49.*sin(-3.141592658+3.141592654*i))*q[3]*q[4]/((i-1.)*(i+7.)*(i-7.)*(i+1.))+185.0550826*(32.*sin(3.141592654*i-25.13274123)+32.*sin(3.141592654*i+25.13274123)+4.*sin(3.141592654*i-25.13274123)*i-4.*sin(3.141592654*i+25.13274123)*i-1.*sin(3.141592654*i-6.283185308)*i^3+sin(3.141592654*i+6.283185308)*i^3-2.*sin(3.141592654*i-6.283185308)*i^2-2.*sin(3.141592654*i+6.283185308)*i^2+128.*sin(3.141592654*i+6.283185308)+128.*sin(3.141592654*i-6.283185308)-64.*sin(3.141592654*i+6.283185308)*i+64.*sin(3.141592654*i-6.283185308)*i-1.*sin(3.141592654*i-25.13274123)*i^3+sin(3.141592654*i+25.13274123)*i^3-8.*sin(3.141592654*i-25.13274123)*i^2-8.*sin(3.141592654*i+25.13274123)*i^2)*q[3]*q[5]/((i-2.)*(i+8.)*(i-8.)*(i+2.))-266.4793189*(-81.*sin(-9.424777958+3.141592654*i)*i+9.*sin(28.27433388+3.141592654*i)*i-9.*sin(-28.27433388+3.141592654*i)*i+81.*sin(9.424777958+3.141592654*i)*i+sin(-9.424777958+3.141592654*i)*i^3-1.*sin(28.27433388+3.141592654*i)*i^3+sin(-28.27433388+3.141592654*i)*i^3-1.*sin(9.424777958+3.141592654*i)*i^3+3.*sin(-9.424777958+3.141592654*i)*i^2+9.*sin(28.27433388+3.141592654*i)*i^2+9.*sin(-28.27433388+3.141592654*i)*i^2+3.*sin(9.424777958+3.141592654*i)*i^2-243.*sin(-9.424777958+3.141592654*i)-81.*sin(28.27433388+3.141592654*i)-81.*sin(-28.27433388+3.141592654*i)-243.*sin(9.424777958+3.141592654*i))*q[3]*q[6]/((i-3.)*(9.+i)*(-9.+i)*(i+3.))-362.7079617*(sin(-31.41592654+3.141592654*i)*i^3-1.*sin(3.141592654*i+12.56637062)*i^3+4.*sin(3.141592654*i-12.56637062)*i^2+10.*sin(31.41592654+3.141592654*i)*i^2+10.*sin(-31.41592654+3.141592654*i)*i^2+4.*sin(3.141592654*i+12.56637062)*i^2-100.*sin(3.141592654*i-12.56637062)*i+16.*sin(31.41592654+3.141592654*i)*i-16.*sin(-31.41592654+3.141592654*i)*i+100.*sin(3.141592654*i+12.56637062)*i+sin(3.141592654*i-12.56637062)*i^3-1.*sin(31.41592654+3.141592654*i)*i^3-160.*sin(-31.41592654+3.141592654*i)-400.*sin(3.141592654*i+12.56637062)-400.*sin(3.141592654*i-12.56637062)-160.*sin(31.41592654+3.141592654*i))*q[3]*q[7]/((i-4.)*(10.+i)*(-10.+i)*(i+4.))-9.869604404*(sin(3.141592654*i-15.70796327)*i^3-1.*sin(3.141592654*i+15.70796327)*i^3+5.*sin(3.141592654*i-15.70796327)*i^2+5.*sin(3.141592654*i+15.70796327)*i^2-45.*sin(3.141592654*i+15.70796327)-45.*sin(3.141592654*i-15.70796327)-9.*sin(3.141592654*i-15.70796327)*i+9.*sin(3.141592654*i+15.70796327)*i-1.*sin(3.141592654*i-9.424777962)*i^3+sin(3.141592654*i+9.424777962)*i^3-3.*sin(3.141592654*i-9.424777962)*i^2-3.*sin(3.141592654*i+9.424777962)*i^2+75.*sin(3.141592654*i+9.424777962)+75.*sin(3.141592654*i-9.424777962)+25.*sin(3.141592654*i-9.424777962)*i-25.*sin(3.141592654*i+9.424777962)*i)*q[4]*q[1]/((i+3.)*(i+5.)*(i-5.)*(i-3.))-39.47841761*(sin(3.141592654*i-18.84955592)*i^3-1.*sin(3.141592654*i+18.84955592)*i^3+6.*sin(3.141592654*i-18.84955592)*i^2+6.*sin(3.141592654*i+18.84955592)*i^2-24.*sin(3.141592654*i-18.84955592)-24.*sin(3.141592654*i+18.84955592)-4.*sin(3.141592654*i-18.84955592)*i+4.*sin(3.141592654*i+18.84955592)*i-1.*sin(3.141592654*i-6.283185308)*i^3+sin(3.141592654*i+6.283185308)*i^3-2.*sin(3.141592654*i-6.283185308)*i^2-2.*sin(3.141592654*i+6.283185308)*i^2+72.*sin(3.141592654*i+6.283185308)+72.*sin(3.141592654*i-6.283185308)-36.*sin(3.141592654*i+6.283185308)*i+36.*sin(3.141592654*i-6.283185308)*i)*q[4]*q[2]/((i+2.)*(i+6.)*(i-6.)*(i-2.))-88.82643964*(sin(3.141592654*i-21.99114858)*i^3-1.*sin(3.141592654*i+21.99114858)*i^3+7.*sin(3.141592654*i-21.99114858)*i^2+7.*sin(3.141592654*i+21.99114858)*i^2-7.*sin(3.141592654*i-21.99114858)-7.*sin(3.141592654*i+21.99114858)-1.*sin(3.141592654*i-21.99114858)*i+sin(3.141592654*i+21.99114858)*i+sin(3.141592654*i+3.141592654)*i^3-1.*sin(3.141592654*i-3.141592654)*i^3-1.*sin(3.141592654*i+3.141592654)*i^2-1.*sin(3.141592654*i-3.141592654)*i^2+49.*sin(3.141592654*i+3.141592654)-49.*sin(3.141592654*i+3.141592654)*i+49.*sin(3.141592654*i-3.141592654)*i+49.*sin(3.141592654*i-3.141592654))*q[4]*q[3]/((i+1.)*(i+7.)*(i-7.)*(i-1.))+246.7401101*(sin(3.141592654*i+3.141592654)*i^3-1.*sin(3.141592654*i-3.141592654)*i^3-1.*sin(3.141592654*i+3.141592654)*i^2-1.*sin(3.141592654*i-3.141592654)*i^2-9.*sin(28.27433389+3.141592654*i)*i^2-9.*sin(-28.27433389+3.141592654*i)*i^2-1.*sin(28.27433389+3.141592654*i)*i+sin(-28.27433389+3.141592654*i)*i+sin(28.27433389+3.141592654*i)*i^3-1.*sin(-28.27433389+3.141592654*i)*i^3+81.*sin(3.141592654*i+3.141592654)-81.*sin(3.141592654*i+3.141592654)*i+81.*sin(3.141592654*i-3.141592654)*i+81.*sin(3.141592654*i-3.141592654)+9.*sin(-28.27433389+3.141592654*i)+9.*sin(28.27433389+3.141592654*i))*q[4]*q[5]/((i-1.)*(9.+i)*(-9.+i)*(i+1.))-355.3057585*(-100.*sin(-6.283185304+3.141592654*i)*i+4.*sin(31.41592654+3.141592654*i)*i-4.*sin(-31.41592654+3.141592654*i)*i+100.*sin(6.283185304+3.141592654*i)*i+sin(-6.283185304+3.141592654*i)*i^3-1.*sin(31.41592654+3.141592654*i)*i^3+sin(-31.41592654+3.141592654*i)*i^3-1.*sin(6.283185304+3.141592654*i)*i^3+2.*sin(-6.283185304+3.141592654*i)*i^2+10.*sin(31.41592654+3.141592654*i)*i^2+10.*sin(-31.41592654+3.141592654*i)*i^2+2.*sin(6.283185304+3.141592654*i)*i^2-40.*sin(31.41592654+3.141592654*i)-40.*sin(-31.41592654+3.141592654*i)-200.*sin(6.283185304+3.141592654*i)-200.*sin(-6.283185304+3.141592654*i))*q[4]*q[6]/((i-2.)*(10.+i)*(-10.+i)*(i+2.))-483.6106156*(sin(-34.55751920+3.141592654*i)*i^3-1.*sin(9.424777964+3.141592654*i)*i^3+3.*sin(-9.424777964+3.141592654*i)*i^2+11.*sin(34.55751920+3.141592654*i)*i^2+11.*sin(-34.55751920+3.141592654*i)*i^2+3.*sin(9.424777964+3.141592654*i)*i^2-121.*sin(-9.424777964+3.141592654*i)*i+9.*sin(34.55751920+3.141592654*i)*i-9.*sin(-34.55751920+3.141592654*i)*i+121.*sin(9.424777964+3.141592654*i)*i+sin(-9.424777964+3.141592654*i)*i^3-1.*sin(34.55751920+3.141592654*i)*i^3-363.*sin(9.424777964+3.141592654*i)-363.*sin(-9.424777964+3.141592654*i)-99.*sin(34.55751920+3.141592654*i)-99.*sin(-34.55751920+3.141592654*i))*q[4]*q[7]/((i-3.)*(11.+i)*(-11.+i)*(i+3.)))+Cd*(.1591549431*(sin(3.141592654*i-3.141592654)*i-1.*sin(3.141592654*i+3.141592654)*i+sin(3.141592654*i-3.141592654)+sin(3.141592654*i+3.141592654))*(diff(p(t), t))[1]/((i-1.)*(i+1.))+.1591549431*(sin(3.141592654*i-6.283185308)*i-1.*sin(3.141592654*i+6.283185308)*i+2.*sin(3.141592654*i-6.283185308)+2.*sin(3.141592654*i+6.283185308))*(diff(p(t), t))[2]/((i-2.)*(i+2.))+.1591549431*(sin(3.141592654*i-9.424777962)*i-1.*sin(3.141592654*i+9.424777962)*i+3.*sin(3.141592654*i-9.424777962)+3.*sin(3.141592654*i+9.424777962))*(diff(p(t), t))[3]/((i-3.)*(i+3.))+.1591549431*(sin(3.141592654*i-12.56637062)*i-1.*sin(3.141592654*i+12.56637062)*i+4.*sin(3.141592654*i-12.56637062)+4.*sin(3.141592654*i+12.56637062))*(diff(p(t), t))[4]/((i-4.)*(i+4.))+.1591549431*(sin(3.141592654*i-15.70796327)*i-1.*sin(3.141592654*i+15.70796327)*i+5.*sin(3.141592654*i-15.70796327)+5.*sin(3.141592654*i+15.70796327))*(diff(p(t), t))[5]/((i-5.)*(i+5.))+.1591549431*(sin(3.141592654*i-18.84955592)*i-1.*sin(3.141592654*i+18.84955592)*i+6.*sin(3.141592654*i-18.84955592)+6.*sin(3.141592654*i+18.84955592))*(diff(p(t), t))[6]/((i-6.)*(i+6.))+.1591549431*(sin(3.141592654*i-21.99114858)*i-1.*sin(3.141592654*i+21.99114858)*i+7.*sin(3.141592654*i-21.99114858)+7.*sin(3.141592654*i+21.99114858))*(diff(p(t), t))[7]/((i-7.)*(i+7.))+.1591549431*(sin(3.141592654*i-25.13274123)*i-1.*sin(3.141592654*i+25.13274123)*i+8.*sin(3.141592654*i-25.13274123)+8.*sin(3.141592654*i+25.13274123))*(diff(p(t), t))[8]/((i-8.)*(i+8.))), i = 1)

 

Warning,  computation interrupted

 

``

``

NULL

pp2 := sum((int(phi[i]*phi[j], x = 0 .. 1, numeric))*(diff(q(t), t, t))[j], j = 1 .. 7)+(1+`&eta;&eta;`)*(sum((int(phi[i]*(diff(phi[j], x, x, x, x)), x = 0 .. 1, numeric))*q(t)[j], j = 1 .. 7))+Cd*(sum((int(phi[i]*phi[j], x = 0 .. 1, numeric))*(diff(q(t), t))[j], j = 1 .. 7))-beta^2*(sum(sum((int(phi[i]*(diff(phi[j], x, x))*(diff(phi[k], x)), x = 0 .. 1, numeric))*q(t)[j]*p[k], k = 1 .. 8), j = 1 .. 7)+sum(sum((int(phi[i]*(diff(phi[j], x))*(diff(phi[k], x, x)), x = 0 .. 1, numeric))*q(t)[j]*p[k], k = 1 .. 8), j = 1 .. 7)+sum((int(AA0*(diff(phi[1], x, x))*phi[i]*(diff(phi[j], x)), x = 0 .. 1, numeric))*p[j], j = 1 .. 8)+sum((int(AA0*(diff(phi[1], x))*phi[i]*(diff(phi[j], x, x)), x = 0 .. 1, numeric))*p[j], j = 1 .. 8)+(3/2)*(sum(sum(sum((int(phi[i]*(diff(phi[j], x))*(diff(phi[k], x))*(diff(phi[l], x, x)), x = 0 .. 1, numeric))*q(t)[j]*q(t)[k]*q(t)[l], l = 1 .. 7), k = 1 .. 7), j = 1 .. 7))+(3/2)*(sum(sum((int(AA0*(diff(phi[1], x, x))*phi[i]*(diff(phi[j], x))*(diff(phi[k], x)), x = 0 .. 1, numeric))*q(t)[j]*q(t)[k], k = 1 .. 7), j = 1 .. 7))+sum((int((AA0*(diff(phi[1], x)))^2*phi[i]*(diff(phi[j], x, x)), x = 0 .. 1, numeric))*q(t)[j], j = 1 .. 7)+3*(sum(sum((int(AA0*(diff(phi[1], x))*phi[i]*(diff(phi[j], x))*(diff(phi[k], x, x)), x = 0 .. 1, numeric))*q(t)[j]*q(t)[k], k = 1 .. 7), j = 1 .. 7))+2*(sum((int(AA0^2*(diff(phi[1], x))*(diff(phi[1], x, x))*phi[i]*(diff(phi[j], x)), x = 0 .. 1, numeric))*q(t)[j], j = 1 .. 7)))-(int(f1*phi[1]*phi[i], x = 0 .. 1, numeric))*cos(Omega*t)

NULL

NULL

``

for z to 7 do limit(pp2, i = z) end do

Warning,  computation interrupted

 

``

NULL

``

``

``

``

``

``

``

``

``

``

``

``

``

``

``


 

Download 11111111111111.mwWould you mind please check out my code11111111111111.mw

11111111111111.mw

First 820 821 822 823 824 825 826 Last Page 822 of 2355