MaplePrimes Questions

Error, numeric exception: division by zeroprpblem_maple_2.mw
 

restart;

Normalizer := simplify

simplify

(1)

asa := (1/1176215040)*(11762150400*Pi^(3/2)*c[2]*c[3]*sqrt(2)*x^(3/2)*cos(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))-11762150400*Pi^(3/2)*c[2]*c[3]*sqrt(2)*x^(3/2)*sin(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))-289348899840*Pi^(3/2)*c[5]*c[2]*sqrt(2)*x^(3/2)*cos(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))+289348899840*Pi^(3/2)*c[5]*c[2]*sqrt(2)*x^(3/2)*sin(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))-1176215040*Pi^(3/2)*c[0]*c[1]*sqrt(2)*x^(3/2)*cos(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))+1176215040*Pi^(3/2)*c[0]*c[1]*sqrt(2)*x^(3/2)*sin(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))-11762150400*Pi^(3/2)*c[3]*c[4]*sqrt(2)*x^(3/2)*cos(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))+11762150400*Pi^(3/2)*c[3]*c[4]*sqrt(2)*x^(3/2)*sin(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))+289348899840*Pi^(3/2)*c[5]*c[4]*sqrt(2)*x^(3/2)*cos(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))-289348899840*Pi^(3/2)*c[5]*c[4]*sqrt(2)*x^(3/2)*sin(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))+5881075200*Pi^(3/2)*c[0]*c[3]*sqrt(2)*x^(3/2)*cos(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))-5881075200*Pi^(3/2)*c[0]*c[3]*sqrt(2)*x^(3/2)*sin(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))-144674449920*Pi^(3/2)*c[5]*c[0]*sqrt(2)*x^(3/2)*cos(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))+144674449920*Pi^(3/2)*c[5]*c[0]*sqrt(2)*x^(3/2)*sin(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))-2352430080*Pi^(3/2)*c[1]*c[2]*sqrt(2)*x^(3/2)*cos(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))+2352430080*Pi^(3/2)*c[1]*c[2]*sqrt(2)*x^(3/2)*sin(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))+1176215040*Pi^(3/2)*c[1]*c[2]*sqrt(2)*sqrt(x)*sin(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))-1176215040*Pi^(3/2)*c[1]*c[4]*sqrt(2)*sqrt(x)*cos(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))-1176215040*Pi^(3/2)*c[1]*c[4]*sqrt(2)*sqrt(x)*sin(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))-5881075200*Pi^(3/2)*c[2]*c[3]*sqrt(2)*sqrt(x)*cos(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))-5881075200*Pi^(3/2)*c[2]*c[3]*sqrt(2)*sqrt(x)*sin(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))+144674449920*Pi^(3/2)*c[5]*c[2]*sqrt(2)*sqrt(x)*cos(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))+588107520*Pi^(3/2)*c[0]*c[1]*sqrt(2)*sqrt(x)*cos(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))+588107520*Pi^(3/2)*c[0]*c[1]*sqrt(2)*sqrt(x)*sin(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))+716931072*c[5]*c[3]*x^12*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+716931072*x^11*c[3]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1158676480*x^13*c[4]*c[5]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*x^13*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*x^11*c[4]*c[5]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-22224863232*x^11*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+716931072*c[5]*c[2]*x^11*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+716931072*c[2]*c[4]*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[2]*c[4]*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-1838182301696*c[5]*c[4]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+32944912678912*x^7*c[4]*c[5]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+592633147392*x^7*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+428356051643520*x^5*c[4]*c[5]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*c[4]*c[0]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*x^6*c[0]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-926941184*c[5]*c[2]*x^11*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+28590342144*c[5]*c[2]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-6273146880*c[5]*c[2]*x^9*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-8065474560*c[5]*c[2]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-450739634176*c[5]*c[2]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+276018462720*c[5]*c[2]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+8342470656*c[2]*c[3]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+16395272192*c[2]*c[4]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-1254629376*c[2]*c[4]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+191330979840*c[2]*c[4]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-579338240*c[4]*c[0]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-225760870400*c[5]*c[1]*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+8800821839169360*c[5]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-8800821839169360*c[5]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-29999084544*c[2]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+32149877760*c[2]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3763888128*c[2]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+69004615680*x^2*c[4]^2*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+55517349888*c[4]^2*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-5045766485760*c[4]^2*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+358465536*c[2]^2*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-2352430080*Pi*c[1]*c[2]*x+2352430080*Pi*c[1]*c[4]*x+11762150400*Pi*c[2]*c[3]*x-289348899840*Pi*c[5]*c[2]*x-1176215040*Pi*c[0]*c[1]*x-11762150400*Pi*c[3]*c[4]*x+289348899840*Pi*c[5]*c[4]*x+27601846272*x^3*c[1]*c[4]*Pi+27601846272*x^3*c[3]*c[4]*Pi-82805538816*x^3*c[4]*c[5]*Pi+1254629376*x^3*c[0]*c[1]*Pi+1254629376*x^3*c[0]*c[3]*Pi-3763888128*x^3*c[0]*c[5]*Pi+31365734400*x^2*c[0]*c[4]*Pi+3136573440*x^2*c[0]*c[2]*Pi+69004615680*x^2*c[2]*c[4]*Pi+869007360*x^6*c[0]*c[4]*Pi+17647534080*x^7*c[4]*c[5]*Pi+802160640*x^7*c[0]*c[5]*Pi+23658725376*x^4*c[2]*c[4]*Pi+1075396608*x^4*c[0]*c[2]*Pi+955908096*x^5*c[0]*c[3]*Pi-955908096*x^5*c[0]*c[5]*Pi+21029978112*x^5*c[3]*c[4]*Pi-21029978112*x^5*c[4]*c[5]*Pi-6810845184*c[4]^2*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-405536768*c[3]^2*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-13830328512000*c[5]^2*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-8754008440320*c[5]^2*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+19885785088*c[4]^2*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+5881075200*Pi^(3/2)*c[3]*c[4]*sqrt(2)*sqrt(x)*cos(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))+5881075200*Pi^(3/2)*c[3]*c[4]*sqrt(2)*sqrt(x)*sin(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))-144674449920*Pi^(3/2)*c[5]*c[4]*sqrt(2)*sqrt(x)*cos(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))-144674449920*Pi^(3/2)*c[5]*c[4]*sqrt(2)*sqrt(x)*sin(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))-2940537600*Pi^(3/2)*c[0]*c[3]*sqrt(2)*sqrt(x)*cos(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))-2940537600*Pi^(3/2)*c[0]*c[3]*sqrt(2)*sqrt(x)*sin(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))+72337224960*Pi^(3/2)*c[5]*c[0]*sqrt(2)*sqrt(x)*cos(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))+72337224960*Pi^(3/2)*c[5]*c[0]*sqrt(2)*sqrt(x)*sin(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))+1176215040*Pi^(3/2)*c[1]*c[2]*sqrt(2)*sqrt(x)*cos(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))+2352430080*Pi^(3/2)*c[1]*c[4]*sqrt(2)*x^(3/2)*cos(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))-2352430080*Pi^(3/2)*c[1]*c[4]*sqrt(2)*x^(3/2)*sin(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))+228969861120*c[5]*c[1]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+356001085440*c[5]*c[3]*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*c[1]*c[3]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[1]*c[3]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+127344881664*c[5]*c[3]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-10565155560960*c[5]*c[3]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+26041253888*c[3]*c[4]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-411923972096*c[3]*c[4]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-60715100160*c[3]*c[4]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-5531739333120*c[3]*c[4]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*c[1]*c[4]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[1]*c[4]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1781465088*c[2]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-289669120*c[2]^2*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+1337160464640*c[3]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-87979326507072*c[4]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+5881075200*Pi*c[0]*c[3]*x-144674449920*Pi*c[5]*c[0]*x-3136573440*c[5]^2*x^12*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-15862099968*c[5]^2*x^12*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*c[2]^2*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+87989363542080*c[4]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1185624760320*c[2]*c[3]*x^3*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6631612416*c[3]*c[4]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+263472168960*c[3]*c[4]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+473981054976*c[5]*c[4]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-17407590520320*c[5]*c[4]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*c[1]*c[2]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[1]*c[2]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3943120896*c[2]*c[3]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+120758077440*c[2]*c[3]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-55696582656*c[5]*c[2]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6137098007040*c[5]*c[2]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3291740135424*c[5]*c[2]*x^5*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+5231009152512*c[5]*c[2]*x^5*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+70978108481280*c[5]*c[2]*x^3*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-71286747307776*c[5]*c[2]*x^3*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+5185077248*c[1]*c[3]*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-89392343040*c[1]*c[3]*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-463470592*c[1]*c[2]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+58455228416*c[5]*c[4]*x^11*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-695205888*c[1]*c[4]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+11355029504*c[1]*c[4]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+358465536*c[1]*c[4]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+152123811840*c[1]*c[4]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-579338240*c[1]*c[3]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-695205888*c[2]*c[3]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*c[2]*c[3]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[2]*c[3]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-926941184*c[3]*c[4]*x^11*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-6273146880*c[3]*c[4]*x^9*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-463470592*c[0]*c[3]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*c[0]*c[3]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[0]*c[3]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+15062794240*c[5]*c[0]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-3226189824*c[5]*c[0]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+183489546240*c[5]*c[0]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-695205888*c[5]*c[0]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*c[5]*c[0]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[5]*c[0]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+450098288640*c[5]*c[4]*x^9*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-811073536*c[2]*c[4]*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-1042808832*c[5]*c[3]*x^12*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+41277849600*c[5]*c[3]*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-946921111552*c[5]*c[3]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-811073536*c[5]*c[1]*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*c[5]*c[1]*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+21261713408*c[5]*c[1]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-6273146880*c[5]*c[1]*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-5556215808*c[5]*c[1]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+174863969280*c[4]^2*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+5341870616576*c[4]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+2630800972800*c[4]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-95590809600*x^5*c[0]*c[5]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-156246165504*x^5*c[0]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-2220693995520*x^3*c[0]*c[5]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+2070138470400*x^3*c[0]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-70824099840*x^5*c[1]*c[4]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-137426724864*x^5*c[1]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1558876999680*x^3*c[1]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1533784412160*x^3*c[1]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+3074618646528*x^5*c[3]*c[4]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+4660600868352*x^5*c[3]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+66544561923840*x^3*c[3]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-66584710063872*x^3*c[3]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-263853041307648*x^5*c[4]*c[5]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-355765111498368*x^5*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-5713675981453440*x^3*c[4]*c[5]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+5714067425818752*x^3*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-165799362560*c[2]*c[4]*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-123536185344*c[2]*c[4]*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-2820171594240*x^4*c[2]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-54747463680*c[2]*c[3]*x^5*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-104268662784*c[2]*c[3]*x^5*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1173078466560*c[2]*c[3]*x^3*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+144674449920*Pi^(3/2)*c[5]*c[2]*sqrt(2)*sqrt(x)*sin(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))-454255493120*c[4]^2*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-637272064*c[5]^2*x^14*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+358465536*c[5]^2*x^14*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*x^10*c[4]^2*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+358465536*c[4]^2*x^12*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+358465536*x^4*c[0]^2*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1568286720*x^2*c[0]^2*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-173801472*c[1]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+3136573440*c[1]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+40495742976*c[5]^2*x^12*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-1679392931840*c[5]^2*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+279155036160*c[5]^2*x^10*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+538280810496*c[5]^2*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+43491569811456*c[5]^2*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-539983223749632*c[5]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+464578475961600*c[5]^2*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-219223333023552*c[5]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-521404416*c[4]^2*x^12*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+358465536*c[3]^2*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*c[3]^2*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+7676231680*c[3]^2*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-268849152*c[3]^2*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-80075407360*c[3]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+92528916480*c[3]^2*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-56928807936*c[3]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1337160464640*c[3]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+358465536*c[1]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*c[1]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3820738521600*c[5]*c[1]*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+11038361411584*c[5]*c[3]*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-181886855230080*c[5]*c[3]*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+2784325040640*x^4*c[2]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-69004615680*x^2*c[2]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-347602944*x^6*c[0]*c[2]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+6990077952*x^4*c[0]*c[2]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+7270694912*x^6*c[0]*c[4]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-120220379136*c[4]*c[0]*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*x^2*c[0]*c[2]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-31365734400*x^2*c[0]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*x^6*c[0]*c[2]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*x^4*c[0]*c[2]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1792327680*x^6*c[0]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+114484930560*c[4]*c[0]*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1998716928*c[1]*c[2]*x^5*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+7348543488*c[1]*c[2]*x^5*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+40775454720*c[1]*c[2]*x^3*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-43284713472*c[1]*c[2]*x^3*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+4660051968*c[1]*c[3]*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+89392343040*c[1]*c[3]*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-132856289280*c[5]*c[1]*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3820738521600*c[5]*c[1]*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+5614197608448*c[5]*c[3]*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+181886855230080*c[5]*c[3]*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-173801472*x^5*c[0]*c[1]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*x^5*c[0]*c[1]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*x^3*c[0]*c[1]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3763888128*x^3*c[0]*c[1]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[5]*c[3]*x^10*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-14338621440*c[5]*c[3]*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+2520121344*x^5*c[0]*c[3]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+5197750272*x^5*c[0]*c[3]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+59594895360*x^3*c[0]*c[3]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-54576377856*x^3*c[0]*c[3]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+1244672*x^2*Pi-882161280*x^(5/2)*c[3]*Pi^(3/2)-882161280*x^(5/2)*c[1]*Pi^(3/2)-735134400*x^(7/2)*c[2]*Pi^(3/2)-530675145*x^(13/2)*c[5]*Pi^(3/2)-578918340*x^(11/2)*c[4]*Pi^(3/2)+2352430080*c[4]*x^(3/2)*Pi^(3/2)-2352430080*c[2]*x^(3/2)*Pi^(3/2)-1176215040*c[0]*x^(3/2)*Pi^(3/2)+1996488704*x^8*c[4]*sqrt(Pi)+2867724288*x^4*c[0]*sqrt(Pi)+2139095040*x^7*c[3]*sqrt(Pi)+5735448576*x^4*c[2]*sqrt(Pi)-2139095040*x^7*c[5]*sqrt(Pi)+2549088256*x^5*c[1]*sqrt(Pi)+2549088256*x^5*c[3]*sqrt(Pi)-7647264768*x^5*c[5]*sqrt(Pi)+1879048192*x^9*c[5]*sqrt(Pi)+2317352960*x^6*c[2]*sqrt(Pi)+643242600*x^(9/2)*c[5]*Pi^(3/2)-643242600*x^(9/2)*c[3]*Pi^(3/2)+2646483840*x^(5/2)*c[5]*Pi^(3/2)+1568286720*x^2*c[0]^2*Pi-5735448576*x^4*c[4]*sqrt(Pi)+19118161920*x^6*c[4]^2*Pi-69004615680*x^2*c[4]^2*Pi)/(Pi^(3/2)*sqrt(x))

(1/1176215040)*(716931072*c[5]*c[3]*x^12*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+716931072*x^11*c[3]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1158676480*x^13*c[4]*c[5]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*x^13*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*x^11*c[4]*c[5]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-22224863232*x^11*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+716931072*c[5]*c[2]*x^11*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+716931072*c[2]*c[4]*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[2]*c[4]*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-1838182301696*c[5]*c[4]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+32944912678912*x^7*c[4]*c[5]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+592633147392*x^7*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+428356051643520*x^5*c[4]*c[5]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*c[4]*c[0]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*x^6*c[0]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-926941184*c[5]*c[2]*x^11*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+28590342144*c[5]*c[2]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-6273146880*c[5]*c[2]*x^9*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-8065474560*c[5]*c[2]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-450739634176*c[5]*c[2]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+276018462720*c[5]*c[2]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+8342470656*c[2]*c[3]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+16395272192*c[2]*c[4]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-1254629376*c[2]*c[4]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+191330979840*c[2]*c[4]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-579338240*c[4]*c[0]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-225760870400*c[5]*c[1]*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+8800821839169360*c[5]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-8800821839169360*c[5]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-29999084544*c[2]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+32149877760*c[2]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3763888128*c[2]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+69004615680*x^2*c[4]^2*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+55517349888*c[4]^2*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-5045766485760*c[4]^2*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+358465536*c[2]^2*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-2352430080*Pi*c[1]*c[2]*x+2352430080*Pi*c[1]*c[4]*x+11762150400*Pi*c[2]*c[3]*x-289348899840*Pi*c[5]*c[2]*x-1176215040*Pi*c[0]*c[1]*x-11762150400*Pi*c[3]*c[4]*x+289348899840*Pi*c[5]*c[4]*x+27601846272*x^3*c[1]*c[4]*Pi+27601846272*x^3*c[3]*c[4]*Pi-82805538816*x^3*c[4]*c[5]*Pi+1254629376*x^3*c[0]*c[1]*Pi+1254629376*x^3*c[0]*c[3]*Pi-3763888128*x^3*c[0]*c[5]*Pi+31365734400*x^2*c[0]*c[4]*Pi+3136573440*x^2*c[0]*c[2]*Pi+69004615680*x^2*c[2]*c[4]*Pi+869007360*x^6*c[0]*c[4]*Pi+17647534080*x^7*c[4]*c[5]*Pi+802160640*x^7*c[0]*c[5]*Pi+23658725376*x^4*c[2]*c[4]*Pi+1075396608*x^4*c[0]*c[2]*Pi+955908096*x^5*c[0]*c[3]*Pi-955908096*x^5*c[0]*c[5]*Pi+21029978112*x^5*c[3]*c[4]*Pi-21029978112*x^5*c[4]*c[5]*Pi-11762150400*Pi^(3/2)*c[3]*c[4]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+11762150400*Pi^(3/2)*c[3]*c[4]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+289348899840*Pi^(3/2)*c[5]*c[4]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-289348899840*Pi^(3/2)*c[5]*c[4]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+5881075200*Pi^(3/2)*c[0]*c[3]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-5881075200*Pi^(3/2)*c[0]*c[3]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-144674449920*Pi^(3/2)*c[5]*c[0]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+144674449920*Pi^(3/2)*c[5]*c[0]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-2352430080*Pi^(3/2)*c[1]*c[2]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+2352430080*Pi^(3/2)*c[1]*c[2]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+1176215040*Pi^(3/2)*c[1]*c[2]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-1176215040*Pi^(3/2)*c[1]*c[4]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-1176215040*Pi^(3/2)*c[1]*c[4]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-5881075200*Pi^(3/2)*c[2]*c[3]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-5881075200*Pi^(3/2)*c[2]*c[3]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+144674449920*Pi^(3/2)*c[5]*c[2]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+588107520*Pi^(3/2)*c[0]*c[1]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+588107520*Pi^(3/2)*c[0]*c[1]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+5881075200*Pi^(3/2)*c[3]*c[4]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+5881075200*Pi^(3/2)*c[3]*c[4]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-144674449920*Pi^(3/2)*c[5]*c[4]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-144674449920*Pi^(3/2)*c[5]*c[4]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-2940537600*Pi^(3/2)*c[0]*c[3]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-2940537600*Pi^(3/2)*c[0]*c[3]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+72337224960*Pi^(3/2)*c[5]*c[0]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+72337224960*Pi^(3/2)*c[5]*c[0]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+1176215040*Pi^(3/2)*c[1]*c[2]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+2352430080*Pi^(3/2)*c[1]*c[4]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-2352430080*Pi^(3/2)*c[1]*c[4]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+144674449920*Pi^(3/2)*c[5]*c[2]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+11762150400*Pi^(3/2)*c[2]*c[3]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-11762150400*Pi^(3/2)*c[2]*c[3]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-289348899840*Pi^(3/2)*c[5]*c[2]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+289348899840*Pi^(3/2)*c[5]*c[2]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-1176215040*Pi^(3/2)*c[0]*c[1]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+1176215040*Pi^(3/2)*c[0]*c[1]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-6810845184*c[4]^2*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-405536768*c[3]^2*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-13830328512000*c[5]^2*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-8754008440320*c[5]^2*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+19885785088*c[4]^2*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+1996488704*x^8*c[4]*Pi^(1/2)+2867724288*x^4*c[0]*Pi^(1/2)+2139095040*x^7*c[3]*Pi^(1/2)+5735448576*x^4*c[2]*Pi^(1/2)-2139095040*x^7*c[5]*Pi^(1/2)+2549088256*x^5*c[1]*Pi^(1/2)+228969861120*c[5]*c[1]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+356001085440*c[5]*c[3]*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*c[1]*c[3]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[1]*c[3]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+127344881664*c[5]*c[3]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-10565155560960*c[5]*c[3]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+26041253888*c[3]*c[4]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-411923972096*c[3]*c[4]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-60715100160*c[3]*c[4]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-5531739333120*c[3]*c[4]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*c[1]*c[4]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[1]*c[4]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+2549088256*x^5*c[3]*Pi^(1/2)-7647264768*x^5*c[5]*Pi^(1/2)+1879048192*x^9*c[5]*Pi^(1/2)+2317352960*x^6*c[2]*Pi^(1/2)-5735448576*x^4*c[4]*Pi^(1/2)+1781465088*c[2]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-289669120*c[2]^2*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+1337160464640*c[3]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-87979326507072*c[4]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+5881075200*Pi*c[0]*c[3]*x-144674449920*Pi*c[5]*c[0]*x-3136573440*c[5]^2*x^12*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-15862099968*c[5]^2*x^12*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*c[2]^2*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+87989363542080*c[4]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1185624760320*c[2]*c[3]*x^3*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6631612416*c[3]*c[4]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+263472168960*c[3]*c[4]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+473981054976*c[5]*c[4]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-17407590520320*c[5]*c[4]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*c[1]*c[2]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[1]*c[2]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3943120896*c[2]*c[3]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+120758077440*c[2]*c[3]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-55696582656*c[5]*c[2]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6137098007040*c[5]*c[2]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3291740135424*c[5]*c[2]*x^5*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+5231009152512*c[5]*c[2]*x^5*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+70978108481280*c[5]*c[2]*x^3*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-71286747307776*c[5]*c[2]*x^3*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+5185077248*c[1]*c[3]*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-89392343040*c[1]*c[3]*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-463470592*c[1]*c[2]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+58455228416*c[5]*c[4]*x^11*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-695205888*c[1]*c[4]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+11355029504*c[1]*c[4]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+358465536*c[1]*c[4]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+152123811840*c[1]*c[4]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-579338240*c[1]*c[3]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-695205888*c[2]*c[3]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*c[2]*c[3]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[2]*c[3]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-926941184*c[3]*c[4]*x^11*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-6273146880*c[3]*c[4]*x^9*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-463470592*c[0]*c[3]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*c[0]*c[3]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[0]*c[3]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+15062794240*c[5]*c[0]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-3226189824*c[5]*c[0]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+183489546240*c[5]*c[0]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-695205888*c[5]*c[0]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*c[5]*c[0]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[5]*c[0]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+450098288640*c[5]*c[4]*x^9*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-811073536*c[2]*c[4]*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-1042808832*c[5]*c[3]*x^12*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+41277849600*c[5]*c[3]*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-946921111552*c[5]*c[3]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-811073536*c[5]*c[1]*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*c[5]*c[1]*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+21261713408*c[5]*c[1]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-6273146880*c[5]*c[1]*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-5556215808*c[5]*c[1]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+174863969280*c[4]^2*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+5341870616576*c[4]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+2630800972800*c[4]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-95590809600*x^5*c[0]*c[5]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-156246165504*x^5*c[0]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-2220693995520*x^3*c[0]*c[5]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+2070138470400*x^3*c[0]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-70824099840*x^5*c[1]*c[4]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-137426724864*x^5*c[1]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1558876999680*x^3*c[1]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1533784412160*x^3*c[1]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+3074618646528*x^5*c[3]*c[4]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+4660600868352*x^5*c[3]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+66544561923840*x^3*c[3]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-66584710063872*x^3*c[3]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-263853041307648*x^5*c[4]*c[5]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-355765111498368*x^5*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-5713675981453440*x^3*c[4]*c[5]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+5714067425818752*x^3*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-165799362560*c[2]*c[4]*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-123536185344*c[2]*c[4]*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-2820171594240*x^4*c[2]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-54747463680*c[2]*c[3]*x^5*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-104268662784*c[2]*c[3]*x^5*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1173078466560*c[2]*c[3]*x^3*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-454255493120*c[4]^2*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-637272064*c[5]^2*x^14*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+358465536*c[5]^2*x^14*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*x^10*c[4]^2*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+358465536*c[4]^2*x^12*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+358465536*x^4*c[0]^2*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1568286720*x^2*c[0]^2*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-173801472*c[1]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+3136573440*c[1]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+40495742976*c[5]^2*x^12*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-1679392931840*c[5]^2*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+279155036160*c[5]^2*x^10*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+538280810496*c[5]^2*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+43491569811456*c[5]^2*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-539983223749632*c[5]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+464578475961600*c[5]^2*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-219223333023552*c[5]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-521404416*c[4]^2*x^12*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+358465536*c[3]^2*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*c[3]^2*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+7676231680*c[3]^2*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-268849152*c[3]^2*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-80075407360*c[3]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+92528916480*c[3]^2*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-56928807936*c[3]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1337160464640*c[3]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+358465536*c[1]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*c[1]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3820738521600*c[5]*c[1]*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+11038361411584*c[5]*c[3]*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-181886855230080*c[5]*c[3]*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+2784325040640*x^4*c[2]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-69004615680*x^2*c[2]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-347602944*x^6*c[0]*c[2]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+6990077952*x^4*c[0]*c[2]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+7270694912*x^6*c[0]*c[4]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-120220379136*c[4]*c[0]*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*x^2*c[0]*c[2]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-31365734400*x^2*c[0]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*x^6*c[0]*c[2]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*x^4*c[0]*c[2]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1792327680*x^6*c[0]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+114484930560*c[4]*c[0]*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1998716928*c[1]*c[2]*x^5*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+7348543488*c[1]*c[2]*x^5*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+40775454720*c[1]*c[2]*x^3*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-43284713472*c[1]*c[2]*x^3*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+4660051968*c[1]*c[3]*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+89392343040*c[1]*c[3]*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-132856289280*c[5]*c[1]*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3820738521600*c[5]*c[1]*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+5614197608448*c[5]*c[3]*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+181886855230080*c[5]*c[3]*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-173801472*x^5*c[0]*c[1]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*x^5*c[0]*c[1]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*x^3*c[0]*c[1]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3763888128*x^3*c[0]*c[1]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[5]*c[3]*x^10*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-14338621440*c[5]*c[3]*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+2520121344*x^5*c[0]*c[3]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+5197750272*x^5*c[0]*c[3]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+59594895360*x^3*c[0]*c[3]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-54576377856*x^3*c[0]*c[3]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+1244672*x^2*Pi-882161280*x^(5/2)*c[3]*Pi^(3/2)-882161280*x^(5/2)*c[1]*Pi^(3/2)-735134400*x^(7/2)*c[2]*Pi^(3/2)-530675145*x^(13/2)*c[5]*Pi^(3/2)-578918340*x^(11/2)*c[4]*Pi^(3/2)+2352430080*c[4]*x^(3/2)*Pi^(3/2)-2352430080*c[2]*x^(3/2)*Pi^(3/2)-1176215040*c[0]*x^(3/2)*Pi^(3/2)+643242600*x^(9/2)*c[5]*Pi^(3/2)-643242600*x^(9/2)*c[3]*Pi^(3/2)+2646483840*x^(5/2)*c[5]*Pi^(3/2)+1568286720*x^2*c[0]^2*Pi+19118161920*x^6*c[4]^2*Pi-69004615680*x^2*c[4]^2*Pi)/(Pi^(3/2)*x^(1/2))

(2)

simplify(asa)

(1/1176215040)*(19118161920*x^6*c[4]^2*Pi-69004615680*x^2*c[4]^2*Pi+1568286720*x^2*c[0]^2*Pi-5735448576*x^4*c[4]*Pi^(1/2)+1996488704*x^8*c[4]*Pi^(1/2)+2867724288*x^4*c[0]*Pi^(1/2)+2139095040*x^7*c[3]*Pi^(1/2)+5735448576*x^4*c[2]*Pi^(1/2)-2139095040*x^7*c[5]*Pi^(1/2)+2549088256*x^5*c[1]*Pi^(1/2)+2549088256*x^5*c[3]*Pi^(1/2)-7647264768*x^5*c[5]*Pi^(1/2)+1879048192*x^9*c[5]*Pi^(1/2)+2317352960*x^6*c[2]*Pi^(1/2)+643242600*x^(9/2)*c[5]*Pi^(3/2)-643242600*x^(9/2)*c[3]*Pi^(3/2)+2646483840*x^(5/2)*c[5]*Pi^(3/2)-882161280*x^(5/2)*c[3]*Pi^(3/2)-882161280*x^(5/2)*c[1]*Pi^(3/2)-735134400*x^(7/2)*c[2]*Pi^(3/2)-530675145*x^(13/2)*c[5]*Pi^(3/2)-578918340*x^(11/2)*c[4]*Pi^(3/2)+2352430080*c[4]*x^(3/2)*Pi^(3/2)-2352430080*c[2]*x^(3/2)*Pi^(3/2)-1176215040*c[0]*x^(3/2)*Pi^(3/2)+1244672*x^2*Pi+716931072*c[5]*c[3]*x^12*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+716931072*x^11*c[3]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1158676480*x^13*c[4]*c[5]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*x^13*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*x^11*c[4]*c[5]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-22224863232*x^11*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+716931072*c[5]*c[2]*x^11*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-2352430080*Pi*c[1]*c[2]*x+2352430080*Pi*c[1]*c[4]*x+11762150400*Pi*c[2]*c[3]*x-289348899840*Pi*c[5]*c[2]*x-1176215040*Pi*c[0]*c[1]*x-11762150400*Pi*c[3]*c[4]*x+289348899840*Pi*c[5]*c[4]*x+27601846272*x^3*c[1]*c[4]*Pi+27601846272*x^3*c[3]*c[4]*Pi-82805538816*x^3*c[4]*c[5]*Pi+1254629376*x^3*c[0]*c[1]*Pi+1254629376*x^3*c[0]*c[3]*Pi-3763888128*x^3*c[0]*c[5]*Pi+31365734400*x^2*c[0]*c[4]*Pi+3136573440*x^2*c[0]*c[2]*Pi+69004615680*x^2*c[2]*c[4]*Pi+869007360*x^6*c[0]*c[4]*Pi+17647534080*x^7*c[4]*c[5]*Pi+802160640*x^7*c[0]*c[5]*Pi+23658725376*x^4*c[2]*c[4]*Pi+1075396608*x^4*c[0]*c[2]*Pi+955908096*x^5*c[0]*c[3]*Pi-955908096*x^5*c[0]*c[5]*Pi+21029978112*x^5*c[3]*c[4]*Pi-21029978112*x^5*c[4]*c[5]*Pi+5881075200*Pi*c[0]*c[3]*x-144674449920*Pi*c[5]*c[0]*x-3136573440*c[5]^2*x^12*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-15862099968*c[5]^2*x^12*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+716931072*c[2]*c[4]*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[2]*c[4]*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-1838182301696*c[5]*c[4]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+32944912678912*c[5]*c[4]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+592633147392*c[5]*c[4]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+428356051643520*c[5]*c[4]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*c[4]*c[0]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[4]*c[0]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-926941184*c[5]*c[2]*x^11*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+28590342144*c[5]*c[2]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-6273146880*c[5]*c[2]*x^9*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-8065474560*c[5]*c[2]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-450739634176*c[5]*c[2]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+276018462720*c[5]*c[2]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+8342470656*c[2]*c[3]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+16395272192*c[2]*c[4]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-1254629376*c[2]*c[4]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+191330979840*c[2]*c[4]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-579338240*c[4]*c[0]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-225760870400*c[5]*c[1]*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+3820738521600*c[5]*c[1]*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+11038361411584*c[5]*c[3]*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-181886855230080*c[5]*c[3]*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+2784325040640*x^4*c[2]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-69004615680*x^2*c[2]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-347602944*x^6*c[0]*c[2]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+6990077952*x^4*c[0]*c[2]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+7270694912*c[4]*c[0]*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-120220379136*c[4]*c[0]*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*x^2*c[0]*c[2]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-31365734400*x^2*c[0]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*x^6*c[0]*c[2]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*x^4*c[0]*c[2]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1792327680*c[4]*c[0]*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+114484930560*c[4]*c[0]*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1998716928*c[1]*c[2]*x^5*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+7348543488*c[1]*c[2]*x^5*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+40775454720*c[1]*c[2]*x^3*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-43284713472*c[1]*c[2]*x^3*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+4660051968*c[1]*c[3]*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+89392343040*c[1]*c[3]*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-132856289280*c[5]*c[1]*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3820738521600*c[5]*c[1]*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+5614197608448*c[5]*c[3]*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+181886855230080*c[5]*c[3]*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-173801472*x^5*c[0]*c[1]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*x^5*c[0]*c[1]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*x^3*c[0]*c[1]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3763888128*x^3*c[0]*c[1]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[5]*c[3]*x^10*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-14338621440*c[5]*c[3]*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+2520121344*x^5*c[0]*c[3]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+5197750272*x^5*c[0]*c[3]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+59594895360*x^3*c[0]*c[3]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-54576377856*x^3*c[0]*c[3]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-95590809600*x^5*c[0]*c[5]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-156246165504*x^5*c[0]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-2220693995520*x^3*c[0]*c[5]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+2070138470400*x^3*c[0]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-70824099840*x^5*c[1]*c[4]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-137426724864*x^5*c[1]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1558876999680*x^3*c[1]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1533784412160*x^3*c[1]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+3074618646528*x^5*c[3]*c[4]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+4660600868352*x^5*c[3]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+66544561923840*x^3*c[3]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-66584710063872*x^3*c[3]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-263853041307648*x^5*c[4]*c[5]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-355765111498368*x^5*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-5713675981453440*x^3*c[4]*c[5]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+5714067425818752*x^3*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-165799362560*x^6*c[2]*c[4]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-123536185344*x^6*c[2]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-2820171594240*x^4*c[2]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-54747463680*c[2]*c[3]*x^5*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-104268662784*c[2]*c[3]*x^5*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1173078466560*c[2]*c[3]*x^3*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1185624760320*c[2]*c[3]*x^3*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6631612416*c[3]*c[4]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+263472168960*c[3]*c[4]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+473981054976*c[5]*c[4]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-17407590520320*c[5]*c[4]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*c[1]*c[2]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[1]*c[2]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3943120896*c[2]*c[3]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+120758077440*c[2]*c[3]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-55696582656*c[5]*c[2]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6137098007040*c[5]*c[2]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3291740135424*c[5]*c[2]*x^5*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+5231009152512*c[5]*c[2]*x^5*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+70978108481280*c[5]*c[2]*x^3*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-71286747307776*c[5]*c[2]*x^3*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+5185077248*c[1]*c[3]*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-89392343040*c[1]*c[3]*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-463470592*c[1]*c[2]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+58455228416*c[5]*c[4]*x^11*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-695205888*c[1]*c[4]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+11355029504*c[1]*c[4]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+358465536*c[1]*c[4]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+152123811840*c[1]*c[4]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-579338240*c[1]*c[3]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-695205888*c[2]*c[3]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*c[2]*c[3]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[2]*c[3]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-926941184*c[3]*c[4]*x^11*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-6273146880*c[3]*c[4]*x^9*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-463470592*c[0]*c[3]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*c[0]*c[3]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[0]*c[3]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+15062794240*c[5]*c[0]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-3226189824*c[5]*c[0]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+183489546240*c[5]*c[0]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-695205888*c[5]*c[0]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*c[5]*c[0]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[5]*c[0]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+450098288640*c[5]*c[4]*x^9*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-811073536*c[2]*c[4]*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-1042808832*c[5]*c[3]*x^12*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+41277849600*c[5]*c[3]*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-946921111552*c[5]*c[3]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-811073536*c[5]*c[1]*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*c[5]*c[1]*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+21261713408*c[5]*c[1]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-6273146880*c[5]*c[1]*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-5556215808*c[5]*c[1]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+228969861120*c[5]*c[1]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+356001085440*c[5]*c[3]*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*c[1]*c[3]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[1]*c[3]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+127344881664*c[5]*c[3]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-10565155560960*c[5]*c[3]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+26041253888*c[3]*c[4]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-411923972096*c[3]*c[4]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-60715100160*c[3]*c[4]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-5531739333120*c[3]*c[4]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*c[1]*c[4]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[1]*c[4]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-637272064*c[5]^2*x^14*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+358465536*c[5]^2*x^14*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*x^10*c[4]^2*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+358465536*c[4]^2*x^12*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+5881075200*Pi^(3/2)*c[3]*c[4]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+5881075200*Pi^(3/2)*c[3]*c[4]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-144674449920*Pi^(3/2)*c[5]*c[4]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-144674449920*Pi^(3/2)*c[5]*c[4]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-2940537600*Pi^(3/2)*c[0]*c[3]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-2940537600*Pi^(3/2)*c[0]*c[3]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+72337224960*Pi^(3/2)*c[5]*c[0]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+72337224960*Pi^(3/2)*c[5]*c[0]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+1176215040*Pi^(3/2)*c[1]*c[2]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+2352430080*Pi^(3/2)*c[1]*c[4]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-2352430080*Pi^(3/2)*c[1]*c[4]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+11762150400*Pi^(3/2)*c[2]*c[3]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-11762150400*Pi^(3/2)*c[2]*c[3]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-289348899840*Pi^(3/2)*c[5]*c[2]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+289348899840*Pi^(3/2)*c[5]*c[2]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-1176215040*Pi^(3/2)*c[0]*c[1]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+1176215040*Pi^(3/2)*c[0]*c[1]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-11762150400*Pi^(3/2)*c[3]*c[4]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+11762150400*Pi^(3/2)*c[3]*c[4]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+289348899840*Pi^(3/2)*c[5]*c[4]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-289348899840*Pi^(3/2)*c[5]*c[4]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+5881075200*Pi^(3/2)*c[0]*c[3]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-5881075200*Pi^(3/2)*c[0]*c[3]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-144674449920*Pi^(3/2)*c[5]*c[0]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+144674449920*Pi^(3/2)*c[5]*c[0]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-2352430080*Pi^(3/2)*c[1]*c[2]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+2352430080*Pi^(3/2)*c[1]*c[2]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+1176215040*Pi^(3/2)*c[1]*c[2]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-1176215040*Pi^(3/2)*c[1]*c[4]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-1176215040*Pi^(3/2)*c[1]*c[4]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-5881075200*Pi^(3/2)*c[2]*c[3]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-5881075200*Pi^(3/2)*c[2]*c[3]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+144674449920*Pi^(3/2)*c[5]*c[2]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+144674449920*Pi^(3/2)*c[5]*c[2]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+588107520*Pi^(3/2)*c[0]*c[1]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+588107520*Pi^(3/2)*c[0]*c[1]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-405536768*c[3]^2*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+358465536*x^4*c[0]^2*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1568286720*x^2*c[0]^2*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-173801472*c[1]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+3136573440*c[1]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+40495742976*c[5]^2*x^12*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-1679392931840*c[5]^2*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+279155036160*c[5]^2*x^10*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+538280810496*c[5]^2*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+43491569811456*c[5]^2*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-13830328512000*c[5]^2*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-8754008440320*c[5]^2*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-539983223749632*c[5]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+464578475961600*c[5]^2*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-219223333023552*c[5]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-521404416*c[4]^2*x^12*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+358465536*c[3]^2*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*c[3]^2*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+7676231680*c[3]^2*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-268849152*c[3]^2*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-80075407360*c[3]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+92528916480*c[3]^2*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-56928807936*c[3]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1337160464640*c[3]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+358465536*c[1]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*c[1]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+69004615680*x^2*c[4]^2*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+55517349888*c[4]^2*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-5045766485760*c[4]^2*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+358465536*c[2]^2*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*c[2]^2*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+19885785088*c[4]^2*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-6810845184*c[4]^2*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-454255493120*c[4]^2*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+174863969280*c[4]^2*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+5341870616576*c[4]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+2630800972800*c[4]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+87989363542080*c[4]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-87979326507072*c[4]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+1337160464640*c[3]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-289669120*c[2]^2*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+1781465088*c[2]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+3763888128*c[2]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+32149877760*c[2]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-29999084544*c[2]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-8800821839169360*c[5]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+8800821839169360*c[5]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2))/(Pi^(3/2)*x^(1/2))

(3)

subs(x = 0, asa)

Error, numeric exception: division by zero

 

``

``


 

Download prpblem_maple_2.mw

 

Hello experts,

I am trying to use solve to find a solution to a system of two equations. The two equations involved are quite complicated, and so sometimes Maple has difficulty with this. In particular, the solve command tries evaluating but never comes up with a solution (I've waited at least an hour, before giving up). 

I recently learned about fsolve, which gives approximate numeric solutions (which would be fine for my purposes), but fsolve too struggles with a solution and simply returns my input to me. I tried plotting the system of equations using plots:-implictplot to see if a solution existed, and as expected it does. I was hoping to get some tips on trying to solve a difficult system like this, perhaps given the knowledge that a solution definitely exists. Unfortunately, I need a solution for many variations of the same system, so simply reading off the approximate solution isn't really an option.

In my attatched code, the system with W = 49 is the first one where Maple really begins to struggle, and I believe that solutions for W>49 are also difficult.

06042020_Predicting_w_AB_Ratio_Maple_Primes.mw

Thanks!

Hello

I need to count and separate the nonlinear terms in a list.  Example:

w:=[[z, y, x, 1], [x*z, x*y, y, 1], [x*z, z, x*y]];

there are 4 nonlinear terms, x*z, x*y, x*z, and x*y.  

The terms can be any combination of the given variables, that is, x, y, and z.  

My solution to the problem of counting the nonlinear terms is 

aux1:=[seq([seq(nops(w[j,i]),i=1..nops(w[j]))],j=1..nops(w))];

aux2:=[seq(selectremove(x->x>1,aux1[i])[1],i=1..nops(aux1))]

res:=convert([seq(convert(nops(aux2[i]),`+`),i=1..nops(aux2))],`+`);

It works but I wonder whether there is a better solution that includes showing the nonlinear terms themselves.

Many thanks

Ed

Cannot find integration proplem_in_maple.mw

restart

with(LinearAlgebra)

with(orthopoly)

``

with(student)

Digits := 32

32

(1)

interface(rtablesize = 100)

10

(2)

a := 0; b := 1; N := 5; h := (b-a)/N; B[0] := 1; B[1] := x; n := 2; B[2] := x^2+2; alpha := 1/2

0

 

1

 

5

 

1/5

 

1

 

x

 

2

 

x^2+2

 

1/2

(3)

NULL

for j from 3 to N do B[j] := expand(x*B[j-1]-B[j-2]) end do

x^3+x

 

x^4-2

 

x^5-3*x-x^3

(4)

for i from 0 to N do x[i] := h*i+a end do

0

 

1/5

 

2/5

 

3/5

 

4/5

 

1

(5)

y := sum(c[s]*B[s], s = 0 .. N)

c[0]+c[1]*x+c[2]*(x^2+2)+c[3]*(x^3+x)+c[4]*(x^4-2)+c[5]*(x^5-3*x-x^3)

(6)

yt := subs(x = t, y)

c[0]+c[1]*t+c[2]*(t^2+2)+c[3]*(t^3+t)+c[4]*(t^4-2)+c[5]*(t^5-3*t-t^3)

(7)

k := expand(int(yt*sin(t)*x, t = 0 .. x))

x*c[0]+22*x*c[4]-c[1]*cos(x)*x^2-c[2]*cos(x)*x^3+2*c[2]*sin(x)*x^2-c[3]*cos(x)*x^4+3*c[3]*sin(x)*x^3+5*c[3]*cos(x)*x^2-c[4]*cos(x)*x^5+4*c[4]*sin(x)*x^4+12*c[4]*cos(x)*x^3-24*c[4]*sin(x)*x^2-c[5]*cos(x)*x^6+5*c[5]*sin(x)*x^5+21*c[5]*cos(x)*x^4-63*c[5]*sin(x)*x^3-123*c[5]*cos(x)*x^2-x*cos(x)*c[0]-22*x*cos(x)*c[4]+x*c[1]*sin(x)-5*x*c[3]*sin(x)+123*x*c[5]*sin(x)

(8)

k4 := k*y

(x*c[0]+22*x*c[4]-c[1]*cos(x)*x^2-c[2]*cos(x)*x^3+2*c[2]*sin(x)*x^2-c[3]*cos(x)*x^4+3*c[3]*sin(x)*x^3+5*c[3]*cos(x)*x^2-c[4]*cos(x)*x^5+4*c[4]*sin(x)*x^4+12*c[4]*cos(x)*x^3-24*c[4]*sin(x)*x^2-c[5]*cos(x)*x^6+5*c[5]*sin(x)*x^5+21*c[5]*cos(x)*x^4-63*c[5]*sin(x)*x^3-123*c[5]*cos(x)*x^2-x*cos(x)*c[0]-22*x*cos(x)*c[4]+x*c[1]*sin(x)-5*x*c[3]*sin(x)+123*x*c[5]*sin(x))*(c[0]+c[1]*x+c[2]*(x^2+2)+c[3]*(x^3+x)+c[4]*(x^4-2)+c[5]*(x^5-3*x-x^3))

(9)

f := (8*x^3*(1/3)-2*x^(1/2))*y/GAMMA(1/2)+(1/1260)*x+k4

((8/3)*x^3-2*x^(1/2))*(c[0]+c[1]*x+c[2]*(x^2+2)+c[3]*(x^3+x)+c[4]*(x^4-2)+c[5]*(x^5-3*x-x^3))/Pi^(1/2)+(1/1260)*x+(x*c[0]+22*x*c[4]-c[1]*cos(x)*x^2-c[2]*cos(x)*x^3+2*c[2]*sin(x)*x^2-c[3]*cos(x)*x^4+3*c[3]*sin(x)*x^3+5*c[3]*cos(x)*x^2-c[4]*cos(x)*x^5+4*c[4]*sin(x)*x^4+12*c[4]*cos(x)*x^3-24*c[4]*sin(x)*x^2-c[5]*cos(x)*x^6+5*c[5]*sin(x)*x^5+21*c[5]*cos(x)*x^4-63*c[5]*sin(x)*x^3-123*c[5]*cos(x)*x^2-x*cos(x)*c[0]-22*x*cos(x)*c[4]+x*c[1]*sin(x)-5*x*c[3]*sin(x)+123*x*c[5]*sin(x))*(c[0]+c[1]*x+c[2]*(x^2+2)+c[3]*(x^3+x)+c[4]*(x^4-2)+c[5]*(x^5-3*x-x^3))

(10)

"f(x):=((8/3 x^3-2 sqrt(x)) (c[0]+c[1] x+c[2] (x^2+2)+c[3] (x^3+x)+c[4] (x^4-2)+c[5] (x^5-3 x-x^3)))/(sqrt(Pi))+1/1260 x+(x c[0]+22 x c[4]+x c[1] sin(x)-5 x c[3] sin(x)+123 x c[5] sin(x)-x cos(x) c[0]-22 x cos(x) c[4]-c[1] cos(x) x^2-c[2] cos(x) x^3+2 c[2] sin(x) x^2-c[3] cos(x) x^4+3 c[3] sin(x) x^3+5 c[3] cos(x) x^2-c[4] cos(x) x^5+4 c[4] sin(x) x^4+12 c[4] cos(x) x^3-24 c[4] sin(x) x^2-c[5] cos(x) x^6+5 c[5] sin(x) x^5+21 c[5] cos(x) x^4-63 c[5] sin(x) x^3-123 c[5] cos(x) x^2) (c[0]+c[1] x+c[2] (x^2+2)+c[3] (x^3+x)+c[4] (x^4-2)+c[5] (x^5-3 x-x^3))"

proc (x) options operator, arrow; ((8/3)*x^3-2*sqrt(x))*(c[0]+Typesetting:-delayDotProduct(c[1], x, true)+c[2]*(x^2+2)+c[3]*(x^3+x)+c[4]*(x^4-2)+c[5]*(x^5-3*x-x^3))/sqrt(Pi)+Typesetting:-delayDotProduct(1/1260, x, true)+(Typesetting:-delayDotProduct(x, c[0], true)+22*x*c[4]+Typesetting:-delayDotProduct(x, c[1], true)*sin(x)-5*x*c[3]*sin(x)+123*x*c[5]*sin(x)-Typesetting:-delayDotProduct(x, cos(x), true)*c[0]-22*x*cos(x)*c[4]-c[1]*cos(x)*x^2-c[2]*cos(x)*x^3+2*c[2]*sin(x)*x^2-c[3]*cos(x)*x^4+3*c[3]*sin(x)*x^3+5*c[3]*cos(x)*x^2-c[4]*cos(x)*x^5+4*c[4]*sin(x)*x^4+12*c[4]*cos(x)*x^3-24*c[4]*sin(x)*x^2-c[5]*cos(x)*x^6+5*c[5]*sin(x)*x^5+21*c[5]*cos(x)*x^4-63*c[5]*sin(x)*x^3-123*c[5]*cos(x)*x^2)*(c[0]+Typesetting:-delayDotProduct(c[1], x, true)+c[2]*(x^2+2)+c[3]*(x^3+x)+c[4]*(x^4-2)+c[5]*(x^5-3*x-x^3)) end proc

(11)

NULL

"H(f,alpha,x):=Int((x-s)^(alpha-1)*f(s)/GAMMA(alpha), s = 0 .. x)"

proc (f, alpha, x) options operator, arrow; Int((x-s)^(alpha-1)*f(s)/GAMMA(alpha), s = 0 .. x) end proc

(12)

`assuming`([value(%)], [x > 0])

proc (f, alpha, x) options operator, arrow; Int((x-s)^(alpha-1)*f(s)/GAMMA(alpha), s = 0 .. x) end proc

(13)

H(f, alpha, x)

Int((((8/3)*s^3-2*s^(1/2))*(c[0]+c[1]*s+c[2]*(s^2+2)+c[3]*(s^3+s)+c[4]*(s^4-2)+c[5]*(s^5-3*s-s^3))/Pi^(1/2)+(1/1260)*s+(s*c[0]+22*s*c[4]+c[1]*s*sin(s)-5*s*c[3]*sin(s)+123*s*c[5]*sin(s)-s*cos(s)*c[0]-22*s*cos(s)*c[4]-c[1]*cos(s)*s^2-c[2]*cos(s)*s^3+2*c[2]*sin(s)*s^2-c[3]*cos(s)*s^4+3*c[3]*sin(s)*s^3+5*c[3]*cos(s)*s^2-c[4]*cos(s)*s^5+4*c[4]*sin(s)*s^4+12*c[4]*cos(s)*s^3-24*c[4]*sin(s)*s^2-c[5]*cos(s)*s^6+5*c[5]*sin(s)*s^5+21*c[5]*cos(s)*s^4-63*c[5]*sin(s)*s^3-123*c[5]*cos(s)*s^2)*(c[0]+c[1]*s+c[2]*(s^2+2)+c[3]*(s^3+s)+c[4]*(s^4-2)+c[5]*(s^5-3*s-s^3)))/((x-s)^(1/2)*Pi^(1/2)), s = 0 .. x)

(14)

z := value(%)

int((((8/3)*s^3-2*s^(1/2))*(c[0]+c[1]*s+c[2]*(s^2+2)+c[3]*(s^3+s)+c[4]*(s^4-2)+c[5]*(s^5-3*s-s^3))/Pi^(1/2)+(1/1260)*s+(s*c[0]+22*s*c[4]+c[1]*s*sin(s)-5*s*c[3]*sin(s)+123*s*c[5]*sin(s)-s*cos(s)*c[0]-22*s*cos(s)*c[4]-c[1]*cos(s)*s^2-c[2]*cos(s)*s^3+2*c[2]*sin(s)*s^2-c[3]*cos(s)*s^4+3*c[3]*sin(s)*s^3+5*c[3]*cos(s)*s^2-c[4]*cos(s)*s^5+4*c[4]*sin(s)*s^4+12*c[4]*cos(s)*s^3-24*c[4]*sin(s)*s^2-c[5]*cos(s)*s^6+5*c[5]*sin(s)*s^5+21*c[5]*cos(s)*s^4-63*c[5]*sin(s)*s^3-123*c[5]*cos(s)*s^2)*(c[0]+c[1]*s+c[2]*(s^2+2)+c[3]*(s^3+s)+c[4]*(s^4-2)+c[5]*(s^5-3*s-s^3)))/((x-s)^(1/2)*Pi^(1/2)), s = 0 .. x)

(15)

`assuming`([value(%)], [x > 0])

int((((8/3)*s^3-2*s^(1/2))*(c[0]+c[1]*s+c[2]*(s^2+2)+c[3]*(s^3+s)+c[4]*(s^4-2)+c[5]*(s^5-3*s-s^3))/Pi^(1/2)+(1/1260)*s+(s*c[0]+22*s*c[4]+c[1]*s*sin(s)-5*s*c[3]*sin(s)+123*s*c[5]*sin(s)-s*cos(s)*c[0]-22*s*cos(s)*c[4]-c[1]*cos(s)*s^2-c[2]*cos(s)*s^3+2*c[2]*sin(s)*s^2-c[3]*cos(s)*s^4+3*c[3]*sin(s)*s^3+5*c[3]*cos(s)*s^2-c[4]*cos(s)*s^5+4*c[4]*sin(s)*s^4+12*c[4]*cos(s)*s^3-24*c[4]*sin(s)*s^2-c[5]*cos(s)*s^6+5*c[5]*sin(s)*s^5+21*c[5]*cos(s)*s^4-63*c[5]*sin(s)*s^3-123*c[5]*cos(s)*s^2)*(c[0]+c[1]*s+c[2]*(s^2+2)+c[3]*(s^3+s)+c[4]*(s^4-2)+c[5]*(s^5-3*s-s^3)))/((x-s)^(1/2)*Pi^(1/2)), s = 0 .. x)

(16)

``


Download proplem_in_maple.mw
 

hi

i have n  initial condition like x(0)=a0   ,x'(0)=a1       .....x(n-1)(0)=an-1  and also n equations like S[i]. i d like to write following code in maple

S[i]- ai-1  =0 for i=1,2,..,n

would you please help me how   should i  do it

thanks a lot

Hello again, it's my first time using maple, so I have more problems :(

I need solve three equations, but maple shows an error:

Error, (in solve) a constant is invalid as a variable, gamma

gamma.mw

I have used g instead of gamma and solve works, but I don't understand what happen.

 

The second problem is when I use g instead of gamma. In some tau values solve() doesn't show the solution. In each solve() always there are one unnecessary equation. Maybe could be that. But I don't know.

g.mw

 

Thank you in advance!!!

 

P.S. Sorry for my bad English

 Hello! I'm trying to solve the following: 

pde1 := (y+z)*(diff(u(x, y, z), x))+(z+x)*(diff(u(x, y, z), y))+(x+y)*(diff(u(x, y, z), z)) = 0;
{pdsolve(pde1,u(x,y,z))}

Unfortunately, after calling pdsolve , I get an empty result set . Can you help me figure out what's going on?  Does it  really have no solution? 

 

 

 

 

 

I try to give the plot, but it shows nothing. why? How can l find the range where 2+r*(b-2)*sqrt(b-1) can be positive, and the range where 2+r*(b-2)*sqrt(b-1) can be negative?


 

restart; with(plots, implicitplot); implicitplot(2+r*(b-2)*sqrt(b-1), b = 1 .. 100, r = 1 .. 100, scaling = constrained)

 

``

``


 

Download mm.mw

Hello Guys and Girls,

I have a problem with animate command with background option..

I attached my maple worksheet for your review.

Could you help me out?  Thanks.

I love Maple,

Sincerely

Ali Guzel

HI, 

I am using the series function on KummerU (Kummer function of the second kind). 

I found that series(KummerU(p,1/2,t),t) works as below, but series(KummerU(p,1/2,t),p) gives me the following error "Error in (series/fracpower) unable to compute series". 

Any idea what that is the case 

Thanks

series(KummerU(p, 1/2, t), t)

Could anyone give an example how to use the hint option in polynomial solutions in PDEtools in maple?

Hello, I have this:

maple.mw

I need save the three solutions in three different variables.

Thanks a lot!!!

I'm trying show the all roots of equations using Bairstow's methodt, but only shows the roots of Quadratic Factor and don't show the others roots of the other equation. Thanks

This the code:


 

restart; Bairstow := proc (n, a, u0, v0, itmax, TOL) local u, v, b, c, j, k, DetJ, du, dv, s1, s2; u := u0; v := v0; b := Array(0 .. n); c := Array(0 .. n); b[n] := a[n]; c[n] := 0; c[n-1] := a[n]; for j to itmax do b[n-1] := a[n-1]+u*b[n]; for k from n-2 by -1 to 0 do b[k] := a[k]+u*b[k+1]+v*b[k+2]; c[k] := b[k+1]+u*c[k+1]+v*c[k+2] end do; DetJ := c[0]*c[2]+(-1)*c[1]*c[1]; du := (-b[0]*c[2]+b[1]*c[1])/DetJ; dv := (b[0]*c[1]-b[1]*c[0])/DetJ; u := u+du; v := v+dv; printf("%3d %12.7f %12.7f %12.4g %12.4g\n", j, u, v, du, dv); if max(abs(du), abs(dv)) < TOL then break end if end do; printf("\nQ(x)=(%g)x^%d", b[n], n-2); for k from n-3 by -1 to 1 do printf(" + (%g)x^%d", b[k+2], k) end do; printf(" + (%g)\n", b[2]); printf("Remainder: %g(x-(%g))+(%g)\n", b[1], u, b[0]); printf("Quadratic Factor: x^2-(%g)x-(%g)\n", u, v); s1 := evalf((1/2)*u+(1/2)*sqrt(u*u+4*v)); if u^2+4*v < 0 then printf("Zeros: %.13g +-(%.13g)i\n", Re(s1), abs(Im(s1))) else s2 := evalf((1/2)*u-(1/2)*sqrt(u*u+4*v)); printf("Zeros: %.13g, %.13g\n", s1, s2) end if end proc; P := proc (x) options operator, arrow; x^5+(-1)*3.5*x^4+2.75*x^3+2.125*x^2+(-1)*3.875*x+1.25 end proc; n := degree(P(x)); a := Array(0 .. n); a[0] := P(0); for i to n do a[i] := coeff(P(x), x^i) end do; itmax := 10; TOL := 10^(-10); r := -1; s := -1; Bairstow(n, a, r, s, itmax, TOL)

  1   -0.6441699    0.1381090       0.3558        1.138
  2   -0.5111131    0.4697336       0.1331       0.3316
  3   -0.4996865    0.5002023      0.01143      0.03047
  4   -0.5000001    0.5000000   -0.0003136   -0.0002023
  5   -0.5000000    0.5000000    6.413e-08    9.268e-09
  6   -0.5000000    0.5000000            0            0

Q(x)=(1)x^3 + (-4)x^2 + (5.25)x^1 + (-2.5)
Remainder: 0(x-(-0.5))+(0)
Quadratic Factor: x^2-(-0.5)x-(0.5)
Zeros: 0.4999999993, -0.9999999997

 

 

Only show two roots: 0.4999999993, -0.9999999997, but the other roots are missing: 2, -1, 1+0.5i, 1-0.5i approximately, any solution?

I think it's in this part, but I can't think of how to implement it to get the missing roots.

 

Download Bairstow.mw

 

I'm using the 15 day trial as a Computer Science student. For my first project, Maple worked very well. I've been using the ApproximateInt() command. This command worked in the first assignment, and so I created a new document to start on my second assignment, and suddenly:

Entering the same ApproximateInt() command in a prompt line will not execute the command. Where it should display a plot of Riemann sums, it only displays the text I had entered. If I open the first document in which it was working properly, it also breaks upon re-iterating the command lines.

Image of expected behaviour:

Image taken right after pressing enter:

Is anyone familiar with this Maple behaviour? Thank you for any help. Meanwhile, I will attempt a reinstallation. The maple file is attached, as well.

P.S: Interestingly, the plot() command does work, as well as simple commands such as 1+2 (Displays "3")

First 570 571 572 573 574 575 576 Last Page 572 of 2425