MaplePrimes Questions

I noticed that something changed with the output of translating abs() to latex. I am not sure when this happened.

Current version use \mid ...\mid  instead of the original \left| .... \right|

The problem with \mid is that the spacing no longer symmetric. It generate too much space on one side of | compared to the other side, and makes the output not pretty any more.

Is it possible to revert this back to the original way it was done? Please see example

restart;
Latex(ln(abs(1+x))=x)

                     \ln \! \left({\mid 1+x \mid}\right) = x

latex(ln(abs(1+x))=x)

                   \ln  \left(  \left| 1+x \right|  \right) =x

The second example gives better looking Latex where the space is symmetric. Here is the output

\documentclass{book}
\usepackage{amsmath}
\begin{document}          
\[
\ln \! \left({\mid 1+x \mid}\right) = x
\]

\[
\ln \! \left(  \left| 1+x \right|  \right) =x
\]
\end{document}

The second output is much better since \left|...\right| automatically sets the spacing the same between them and the math on each side.  (same if \lvert and \rvert were used)

I just noticed this first time looking at current output. I do not think this is how it used to be, else I would probably seen it before.

I am using Maple 2020.2 and Physics 890 (latest).

If not possible to change back to \left| ... right| . may be a new configuration parameter could be added to alow a user to choose which one?

Window 10.

 

Hi, 

Working with Legendre Polynomials (LegendreP) I observed that solve doesn't find the correct number of zeros.
More precisely, for N > 17, solve(LegendreP(N, x)) finds less zeros than N.

I wrote a procedure based on a theorem about the intertwined location of the zeros of orthogonal polynomial of successive degrees. So this problem is not blocking, but I would like to understand while solve(LegendreP(N, x)) doesn't always do the job.

Thanks in advance.
 

restart:

Z := n -> op~(2, { allvalues(solve(LegendreP(n,x))) } );

proc (n) options operator, arrow; `~`[op](2, {allvalues(solve(LegendreP(n, x)))}) end proc

(1)

Digits:=10:
Z(17):
numelems(%);

17

(2)

Z(18):
numelems(%);

16

(3)

Digits:=15:
Z(18):
numelems(%);

16

(4)

Digits:=20:
Z(18):
numelems(%);

15

(5)

Zf := n -> op~(2, { allvalues(solve(evalf(LegendreP(n,x)))) } );
Z(18):
numelems(%);

proc (n) options operator, arrow; `~`[op](2, {allvalues(solve(evalf(LegendreP(n, x))))}) end proc

 

15

(6)

# Let z[N][i] the ith zero of any orthogonal polynomial P(N,x) of degree N.
#
# It is known that each open interval(z[N][i], z[N][i+1]) contains
# exactly a unique zero of the of P(N+1,x).

Z17 := [ -1, Z(17)[], 1]:
Z18 := NULL:
for n from 1 to 18 do
  Z18 := Z18, fsolve(LegendreP(18,x),  x=Z17[n]..Z17[n+1]);
end do:
numelems({Z18})

18

(7)

# A procedure to compute zeros of LegendreP up to degree N


zeros := proc(N)
  local zeros_table, Z, n, p, z:
  zeros_table := table([0=[]]):
  Z := [-1, 1]:
  for n from 1 to N do
    z := NULL:
    for p from 1 to n do
      z := z, fsolve(LegendreP(n,x),  x=Z[p]..Z[p+1]);
    end do;
    zeros_table[n] := [z]:
    Z := [-1, z, 1]
  end do;
  return zeros_table
end proc:


 

Download LegendreP_zeros.mw

This ode

ode:=diff(y(x),x)=sqrt(1-y(x)^2)

has general solution y(x) = sin(x + _C1) but it also has solution y=-1 and y=+1. Since these extra solutions can't be obtained from the general solution by specific value of the constant of integration, they are singular solution.

But I am not able to get Maple to show these:

restart;
ode:=diff(y(x),x)=sqrt(1-y(x)^2);    
dsolve(ode);
dsolve(ode,'singsol'='all',[separable]);
dsolve(ode,[separable]);

We can check that y=1.,y=-1 are solutions

odetest(y(x)=1,ode);
odetest(y(x)=-1,ode);

0
0

Only after I used this, was Maple able to gives these solutions

dsolve(ode,'Lie');
dsolve(ode,'Lie',singsol=all);

So only when using `Lie` symmetry methods and also using singsol=all it worked.

Most people will not think of using this specialized option.

Why Maple did not give these singular solutions using the standard dsolve(ode,singsol=all) command?

Should it not have done so? Now it makes it more confusing as to which option to use to obtain the singular solution, as one might have to keep trying different options.

What do others think? 

Maple 2020.2

I used dsolve to solve the Initial value problems numericaly.
When I set the parameter range=1..5*10^4 , it works and cost only about 200s cpu time.
But if I set range=1..2*10^5, it stop running ( cpu time stop) when the mserver memory reach about 1.5 G. (the memory record in the bottom-right of maple interface is about 700M .)

What is the reason please?  

Hello. I want to use the command verify but with two variables. For example:

verify(x^2 + y^2, 0, {'greater_equal'});

but I get FAIL as an answer. I tried adding before the verify command assume(x, 'real'); assume(y, 'real');

but notihng changed.

 

Thanks for any help.

I need help for designing a procedure for Schubert Kronecker polynomial program in maple.

I am trying to solve this type of problem:

I thought I could double check my answers by creating a RandomVariable and calculating the probablity using the Probability function.

But from the RandomVariables documentation,  it seems only univariate random variables are supported.

Is there really no way to define a RandomVariable given a joint distribution?

so i have a little school laptop and maple on it works just fine. Then i have my all powerful gaming desktop with an AM RTX 3700x ,RTX 2070S, SSD and 32GB ram.

I have never seen maple run so slow on any pc as i have on my desktop. It is completely impossible to use maple. Just writing normal input like 123 takes forever. One thing i have noticed is evertime i do some sort of action, then the icons to the left slowly go from being colored to grey and back to colored before i can do a new action.

The two images below show an example here you can see it is about to go from being colored to being grey, when i try to mark stuff. I have tried to install the x64 and x86 version, i have tried giving it 4096 ram in the ini file and i have tried removing splash. Nothing works....