Gonzalo Garcia

85 Reputation

5 Badges

12 years, 229 days

MaplePrimes Activity


These are questions asked by

Hi!

I have seen th following procedure to compute the image of the points of [0,1] under the so called Peano space-filling curve (sorry, I have to pasted the code in "text plane" mode):

P[0] := (x, y) -> ((1/3)*y, (1/3)*x);

P[1] := (x, y) -> (-(1/3)*x+1/3, (1/3)*y+1/3); 

P[2] := (x, y) -> ((1/3)*x, (1/3)*y+2/3); 

P[3] := (x, y) -> ((1/3)*x+1/3, -(1/3)*y+1);

P[4] := (x, y) -> (2/3-(1/3)*y, 2/3-(1/3)*x); 

P[5] := (x, y) -> ( (1/3)*x+1/3, 1/3-(1/3)*y));

 P[6] := (x, y) -> (1/3)*x+2/3, (1/3)*y);

P[7] := (x, y) -> (-(1/3)*x+1, (1/3)*y+1/3);

P[8] := (x, y) -> ((1/3)*x+2/3, (1/3)*y+2/3);

peano := proc (t::numeric, depth::integer)

local q, r; global P;

if depth = 0 then return 0, 0 end if;

q := floor(9*t); r := 9*t-q;

return P[q](peano(r, depth-1))

end proc;

 

Now, I need to use the procedure "peanofun" as a function. For instance, if we define f:=(x,y)->x+y, I need to use (plot, compute, etc) for instance, the function f(peanofun(t,5))

Can you help me with this issue, please?

Many thanks for your time!

 

 

Hi!

I am an error with the use of the function "Analytic" of the packpage RootFinding. These are the procedures:

 

CreaCos := proc (C, n, m, t) local k, F; F := C[1][1]+(C[1][2]-C[1][1])*t; for k to n-1 do F := F, C[k+1][1]+((1/2)*C[k+1][2]-(1/2)*C[k+1][1])*(1-cos(Pi*m^k*t)) end do; return F end proc;

 

Then, for k=50, 100, 150... the instruction

works correctly. However, for higher values of k (for instance, k=250) returns the below error. Some idea or suggets about occurs this error?

Many thanks for your time! 

Error, (in RootFinding:-Analytic) unable to evaluate `@`(evalf, proc (x) option remember; table( [( 0.524900000000000000000000000000e-1+Float(undefined)*I ) = Float(undefined)+Float(undefined)*I ] ) 31250*Pi*sin(62500*Pi*x)/(7/18-(1/2)*cos(62500*Pi*x)) end proc) at the value 0.524900000000000000000000000000e-1+Float(undefined)*I. The expression to be solved was probably not analytic.

 

 

 

Hi,

 

Let, fixed an integer i and 1<=j<=2^{i}-1, for each x and y in [0,1] let the following mapping

Then, with the above procedure we can obtained, for a fixed i, all the mappings for j=1,...,2^{i}-1

 

However, How can I to evalute the "components" of the above procedure? For instance, I can not to compute CreaF(2)[1](0.35,0.465) (i.e., the first function in the "vector" CreaF(2), in x=0.35, y=0.465). 

 

Thanks very much for your time.

 

Hi!!

 

I am trying to plot the above curve:

 

restart; with(plots)

> f0 := proc (t) options operator, arrow; t, (-1)*3.9*t*(t-1) end proc; 

> IFS := proc (i, x, y) if i = 1 then return (1/2)*y, (1/2)*x end if; if i = 2 then return (1/2)*x, (1/2)*y+1/2 end if; if i = 3 then return (1/2)*x+1/2, (1/2)*y+1/2 end if; if i = 4 then return -(1/2)*y+1, -(1/2)*x+1/2 end if end proc; 

> g := proc (t) local j; for j to 4 do if evalf((1/4)*j-1/4) <= evalf(t) and evalf(t) <= evalf((1/4)*j) then return IFS(j, f0(4*t-j+1)); break end if end do end proc; 

 

Thus, the instruction  parametricplot(['g'(t),t=0..1]) return the message  

Error, (in plot) incorrect first argument [g(t), t = 0 .. 1]

Some idea or hit to plot this?

 

Thank you for your time

 

Hi!

In a paper due to Borwein

http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P172.pdf

it is shown a (very beautiful) graph of the zeros of a partial sum of the Zeta-Riemann, where he indicates that the plot is "the normalized zeros of the 5th partial sum of the Zeta function". Somebody know how one can plot this with Maple?

Thank you!

✐♦❝❄t✉⑥♠❧❄❞❢❤❡⑦⑧❛❋⑨⑤⑦⑧❛✯ts❝⑩❦✑❝❄❜❚qs❴❇❛ ✈❇❜❶q✉❴❷♥♦❧❄t✇q✉❤❡❧❄❞★❦sr❇⑥✤❝❄❜✫qs❴❇❛❹❸✫❤❡❛⑧⑥✜❧❺✐❇✐❻⑦⑧❛⑧q✉❧❈❼❽❜❀r❇✐♦♣✒qs❤❡❝❄✐

1 2 3 4 5 Page 4 of 5