mehdibgh

240 Reputation

6 Badges

7 years, 242 days

MaplePrimes Activity


These are questions asked by mehdibgh

I want to express my two variable function f using Taylor expansion. But no success yet.

Why Taylor series can not estimate my function in desired interval [-1<x,y<1]?

restart

with(Student[MultivariateCalculus]):

 

f := -5023626067733175609651265492842895195168362165*xx^5*yy^9*(1/5575186299632655785383929568162090376495104)+2207379816207475241162406248223006569040862935*xx^5*yy^8*(1/2787593149816327892691964784081045188247552)+5795161625895678368156852916105373987594511979*xx^6*(1/22300745198530623141535718272648361505980416)-539977758872163289054492124375185771143918033*xx^6*yy*(1/696898287454081973172991196020261297061888)+782685832362921584689673760969891945953777553*xx^6*yy^2*(1/5575186299632655785383929568162090376495104)+749877940244270735637721966049124917356845885*xx^6*yy^3*(1/174224571863520493293247799005065324265472)+14159347676475748959036290080103848146860867025*xx^6*yy^4*(1/11150372599265311570767859136324180752990208)-2937701213452088192123555543440803264914467299*xx^6*yy^5*(1/348449143727040986586495598010130648530944)-23673134207774883972271882396704370580007933039*xx^6*yy^6*(1/5575186299632655785383929568162090376495104)-62755544772437504320590342390381422715234113715/89202980794122492566142873090593446023921664+35696532930567486560276536615522532283474689213*yy*(1/2787593149816327892691964784081045188247552)+43423414494451507811145033075147441881593811799*yy^2*(1/22300745198530623141535718272648361505980416)+1173296429365947392287371443632107462978009165*xx^6*yy^7*(1/174224571863520493293247799005065324265472)-56566850002827011453690682806041619180254985625*yy^3*(1/696898287454081973172991196020261297061888)+57447439083834576362467553225131370438848237035*xx^6*yy^8*(1/22300745198530623141535718272648361505980416)-1277356081222180962342283013232991241852904465*xx^6*yy^9*(1/696898287454081973172991196020261297061888)-29946355461657315300256240552185966952551471*xx^7*(1/1393796574908163946345982392040522594123776)+998213736763384913910074759047227544847506773*xx^7*yy*(1/11150372599265311570767859136324180752990208)-2038600361316622246653155899145012259420048867785*yy^4*(1/44601490397061246283071436545296723011960832)+10578825782023300845453772557509072093336001*xx^7*yy^2*(1/43556142965880123323311949751266331066368)-4303517165264733669855129139552505045324631645*xx^7*yy^3*(1/11150372599265311570767859136324180752990208)-652299342907430898149182084981866414949696905*xx^7*yy^4*(1/696898287454081973172991196020261297061888)+11170081785792631086653879206603595320491089331*xx^7*yy^5*(1/11150372599265311570767859136324180752990208)+116540829629507365267125159526451609264014215*xx^7*yy^6*(1/87112285931760246646623899502532662132736)+211134394987302797546644924545169826774270265159*yy^5*(1/1393796574908163946345982392040522594123776)-14785537121406447202257499440081382142298519099*xx^7*yy^7*(1/11150372599265311570767859136324180752990208)+1970986683407627074325019523003479974617451789943*yy^6*(1/22300745198530623141535718272648361505980416)-868641325364973493898126340263842300348545855*xx^7*yy^8*(1/1393796574908163946345982392040522594123776)+216255546256559295251079313253452049445763455*xx^7*yy^9*(1/348449143727040986586495598010130648530944)-4089215965643055747590786827106386135115380275*xx^8*(1/89202980794122492566142873090593446023921664)+1869246621670048362557342074310025153518449965*xx^8*yy*(1/2787593149816327892691964784081045188247552)+18712604797880071317805036942199122521197359575*xx^8*yy^2*(1/22300745198530623141535718272648361505980416)-3479476522267890993628796487849129439635143625*xx^8*yy^3*(1/696898287454081973172991196020261297061888)-77131555128675321096947207038878222843991869993*yy^7*(1/696898287454081973172991196020261297061888)-206512033439850904054937113093163624192322042825*xx^8*yy^4*(1/44601490397061246283071436545296723011960832)+15350689937843699961175740256400109996121380375*xx^8*yy^5*(1/1393796574908163946345982392040522594123776)+157001869330425518481531763580902779395436599415*xx^8*yy^6*(1/22300745198530623141535718272648361505980416)-6686861200533386632065997818427854246215113305*xx^8*yy^7*(1/696898287454081973172991196020261297061888)-3917684154726736823398471536296978037714283086195*yy^8*(1/89202980794122492566142873090593446023921664)-285743684916570536194588196441080828723328178675*xx^8*yy^8*(1/89202980794122492566142873090593446023921664)+8094790880015327525694605814920739418439287725*xx^8*yy^9*(1/2787593149816327892691964784081045188247552)+30423874459994412977383604476886160940746185*xx^9*(1/5575186299632655785383929568162090376495104)-1197236208181378637639504269592639035279087665*xx^9*yy*(1/44601490397061246283071436545296723011960832)-72716798311978341010558827315982986191821905*xx^9*yy^2*(1/696898287454081973172991196020261297061888)+5138909461003175489938484170634052266819688725*xx^9*yy^3*(1/44601490397061246283071436545296723011960832)+1206817075246069632318716986669541278160772775*xx^9*yy^4*(1/2787593149816327892691964784081045188247552)-12993287722661922638788467553649639108437064835*xx^9*yy^5*(1/44601490397061246283071436545296723011960832)-431284328058774504067793959976795724976545555*xx^9*yy^6*(1/696898287454081973172991196020261297061888)+17639360745426635511855086638766468926126459875*xx^9*yy^7*(1/44601490397061246283071436545296723011960832)-2146702909675882809503682033933399905335826325*xx^9*yy^9*(1/11150372599265311570767859136324180752990208)+1587967252519403636411870604735180043125989625*xx^9*yy^8*(1/5575186299632655785383929568162090376495104)+76828297887427851822683521168415270943435162685*yy^9*(1/2787593149816327892691964784081045188247552)+220816865194317615868568855814620996552449073*xx*(1/5575186299632655785383929568162090376495104)-9205355621994819342146712860571987786619361601*xx*yy*(1/44601490397061246283071436545296723011960832)-104255809907916433055923335622932126645726549*xx*yy^2*(1/696898287454081973172991196020261297061888)+27484692689867334306687311759874973819976026005*xx*yy^3*(1/44601490397061246283071436545296723011960832)+1583056855557692418384969876461998197073089695*xx*yy^4*(1/2787593149816327892691964784081045188247552)-36304948749180317956941914133403396762716230691*xx*yy^5*(1/44601490397061246283071436545296723011960832)-590212436135125327923049635849260481403670583*xx*yy^6*(1/696898287454081973172991196020261297061888)+27046038795224386955728969793334632924015008227*xx*yy^7*(1/44601490397061246283071436545296723011960832)+2168816628024980374461014350770096009019357665*xx*yy^8*(1/5575186299632655785383929568162090376495104)-2255097230860381206152749351617455809672044745*xx*yy^9*(1/11150372599265311570767859136324180752990208)+35122173917479363738100862234581108137514304171*xx^2*(1/22300745198530623141535718272648361505980416)-17449701902039745490242163912540688306429882361*xx^2*yy*(1/696898287454081973172991196020261297061888)-11540959773500599403794316292492996114189538863*xx^2*yy^2*(1/5575186299632655785383929568162090376495104)+27287439738914744607616926917914225474665410565*xx^2*yy^3*(1/174224571863520493293247799005065324265472)+929769947314964740179937673332890647768037984465*xx^2*yy^4*(1/11150372599265311570767859136324180752990208)-100809382380090436397261413740272360141145204891*xx^2*yy^5*(1/348449143727040986586495598010130648530944)-930314746723434588666177195703059675161177190255*xx^2*yy^6*(1/5575186299632655785383929568162090376495104)+36390552938954376406834468187448925576623439893*xx^2*yy^7*(1/174224571863520493293247799005065324265472)+1872760743346397986120124413411813119412045269675*xx^2*yy^8*(1/22300745198530623141535718272648361505980416)-35643509355104072817665294345590475660747146425*xx^2*yy^9*(1/696898287454081973172991196020261297061888)-125283292999146417157156696376640452081866835*xx^3*(1/1393796574908163946345982392040522594123776)+5011420945327438626354964312196465908094234685*xx^3*yy*(1/11150372599265311570767859136324180752990208)+29341459645317546529685572705520876577051855*xx^3*yy^2*(1/87112285931760246646623899502532662132736)-15637727799880882327290754576104647826715168925*xx^3*yy^3*(1/11150372599265311570767859136324180752990208)-851688199122087410134053760306093104684621525*xx^3*yy^4*(1/696898287454081973172991196020261297061888)+23458516464006675395891679247259419002768896835*xx^3*yy^5*(1/11150372599265311570767859136324180752990208)+39584968580329795728950940517214770307434335*xx^3*yy^6*(1/21778071482940061661655974875633165533184)-20361225581568567923686744589522827658576624955*xx^3*yy^7*(1/11150372599265311570767859136324180752990208)-1174244552874873223035231031480900497934023075*xx^3*yy^8*(1/1393796574908163946345982392040522594123776)+941109349474535911451616661821106567867537125*xx^3*yy^9*(1/1393796574908163946345982392040522594123776)-48412290717709997717153300332089796247538326265*xx^4*(1/44601490397061246283071436545296723011960832)+17196469545705046799299985950707233685621881055*xx^4*yy*(1/1393796574908163946345982392040522594123776)-9551461763890264957289963973620923748598225435*xx^4*yy^2*(1/11150372599265311570767859136324180752990208)-26051472095770585704126329008135447818638784275*xx^4*yy^3*(1/348449143727040986586495598010130648530944)-765302392604646459013613426858243443467023490875*xx^4*yy^4*(1/22300745198530623141535718272648361505980416)+94251624724512021502035994822030873708141367565*xx^4*yy^5*(1/696898287454081973172991196020261297061888)+843981485493394825713526892530506348990296828805*xx^4*yy^6*(1/11150372599265311570767859136324180752990208)-33218490572036542393092937176469859040906121155*xx^4*yy^7*(1/348449143727040986586495598010130648530944)-1758702445038817232726176779731884586549332868025*xx^4*yy^8*(1/44601490397061246283071436545296723011960832)+31380186488931551370058361496245928395816772575*xx^4*yy^9*(1/1393796574908163946345982392040522594123776)+184838927094446995029201369223921105703104647*xx^5*(1/2787593149816327892691964784081045188247552)-6817973449093402642853212701104432585928821163*xx^5*yy*(1/22300745198530623141535718272648361505980416)-113510140727511300460098712979462156361337425*xx^5*yy^2*(1/348449143727040986586495598010130648530944)+23570688854853763073042723518782612790921757535*xx^5*yy^3*(1/22300745198530623141535718272648361505980416)+1613038118657167505912389296857854524947676825*xx^5*yy^4*(1/1393796574908163946345982392040522594123776)-44608078263668464626393951292252447406629869273*xx^5*yy^5*(1/22300745198530623141535718272648361505980416)-588774433706353379897742534304221654039246663*xx^5*yy^6*(1/348449143727040986586495598010130648530944)+47950825635610780986659544491454706340397108297*xx^5*yy^7*(1/22300745198530623141535718272648361505980416):

g := .5*(1+tanh(f)):

plot3d(g, xx = -1 .. 1, yy = -1 .. 1, color = red, style = surface)

 

 

h := Student:-MultivariateCalculus:-TaylorApproximation(g, [xx, yy] = [0, 0], 35):

plot3d(h, xx = -1 .. 1, yy = -1 .. 1, color = red, style = surface)

 

 

Download taylorProblem.mw

I want to import a numeric 2800*1 matrix from matlab to maple by following command, but faced error as bellow:

X := ImportMatrix("E:/.../Omega.mat", source = MATLAB);
 ImportMatrix:-ModuleApply called with arguments: E:/.../Omega.mat, datatype = auto, delimiter = (), format = (), mode = (), output = all, ragged = true, skiplines = 0, source = MATLAB, sourceid = all, transpose = false
 #(ImportMatrix:-ModuleApply,36): error
Error, (in ImportMatrix) Array index out of range
 locals defined as: file = E:/.../Omega.mat, src = Matlab, ext = ext, res = res, x = x, isv7 = isv7, del = false

Where is the problem?

How to import?

Any comment, idea or innovation to calculate this parametric integral?

Note M, II, JJ are arbitrary positive integers (0<M, II, JJ<11).

F must be a function of Pm at the final!

``

restart

M := 3:

JJ := 5

II := 5

with(ArrayTools):

W := RandomArray(II, JJ, M):

V := ArrayTools:-RandomArray(II, JJ, M):

w := add(add(add(W[i, j, m]*LegendreP(i-1, x)*LegendreP(j-1, y)*p[m], i = 1 .. II), j = 1 .. JJ), m = 1 .. M):

v := add(add(add(V[i, j, m]*LegendreP(i-1, x)*LegendreP(j-1, y)*p[m], i = 1 .. II), j = 1 .. JJ), m = 1 .. M):

L := add(add((LegendreP(i-1, x)*LegendreP(j-1, y))^2, i = 1 .. II), j = 1 .. JJ):

H := 1+tanh(w-v)

F := int(H*L, [y = -1 .. 1, x = -1 .. 1])

Warning,  computation interrupted

 

``

``

Download integralproblem.mw

Why I get "Error, invalid subscript selector" error in my code?

y1 := Grid:-Seq(UP1(s, U, V, W, Phi, Xi, N, a, b, II, JJ, A, B, Dd, M, Ns), s = 1 .. 7);
UKt := add(y1[i], i = 1 .. 7);

Error, invalid subscript selector

As you can see y1 is defined without any problem and have 7 seqments, but the next line warns invalid subscript selector.

What is the best and accurate way to export a large symbolic matrix (200*300) from Maple to Matlab? The Marix have a lot of variables, symbols and operators such as diiff, int, ....

Here is a simple example:

NULL

restart

NULL

A := Matrix(2, 6, {(1, 1) = x*y*z, (1, 2) = (1/2)*tau[2], (1, 3) = sin(x*y*z), (1, 4) = ln(x*y*z), (1, 5) = tau[1]*exp(x*y*z), (1, 6) = sin(x+y)+cos(x+y), (2, 1) = x^2+1, (2, 2) = x^2+1/sin(x*y*z), (2, 3) = 2*exp(y), (2, 4) = tau[1], (2, 5) = diff(f(x, y, z), x), (2, 6) = int(f(x, y, z), x)})

A := 1/sin(protected)

(1)

``

CodeGeneration[Matlab](codegen[makeproc](A, [x, y, tau[1], tau[2]]))

Error, (in codegen/makeproc) optional arguments must be equations [x, y, tau[1], tau[2]]

 

``

``

``

``

``

``

Download export.mw

1 2 3 4 5 6 7 Last Page 1 of 18