minhthien2016

235 Reputation

5 Badges

4 years, 288 days

MaplePrimes Activity


These are questions asked by minhthien2016

I want to find the maximize and minimize of the function
f:=x->(cos(x)+sqrt(3)*sin(x))/(cos(x)+sin(x)+2);
I tried 
minimize(f(x), x, location = 'true');
and
maximize(f(x), x, location = 'true');
But I didn't get the results.  How do I find the maximize and minimize of above funciton?

How can I check six numbers: a, b, c, d, e, f are length six sides of a tetrahedron?

I have a list L:=[[0,0,0], [1,0,0], [1,1,0], [0,1,0], [0,0,1], [1,0,1], [1,1,1], [0,1,1]] (8 vertices of a cube). How can I select four vertices of the list to make a regular tetrahedron?

I see from here http://www.mapleprimes.com/questions/220829-How-Do-I-Write-The-Equation-Of-The-Plane to write the equation of a sphere. I tried 
restart; L := [[[0, 0, 0], [2, 0, 0], [0, 2, 0], [2, 2, 0]], [[0, 0, 0], [2, 0, 0], [0, 2, 0], [0, 0, 2]], [[0, 0, 0], [2, 0, 0], [0, 2, 0], [2, 0, 2]], [[0, 0, 0], [2, 0, 0], [0, 2, 0], [0, 2, 2]], [[0, 0, 0], [2, 0, 0], [0, 2, 0], [2, 2, 2]], [[0, 0, 0], [2, 0, 0], [2, 2, 0], [0, 0, 2]], [[0, 0, 0], [2, 0, 0], [2, 2, 0], [2, 0, 2]], [[0, 0, 0], [2, 0, 0], [2, 2, 0], [0, 2, 2]], [[0, 0, 0], [2, 0, 0], [2, 2, 0], [2, 2, 2]], [[0, 0, 0], [2, 0, 0], [0, 0, 2], [2, 0, 2]], [[0, 0, 0], [2, 0, 0], [0, 0, 2], [0, 2, 2]], [[0, 0, 0], [2, 0, 0], [0, 0, 2], [2, 2, 2]], [[0, 0, 0], [2, 0, 0], [2, 0, 2], [0, 2, 2]], [[0, 0, 0], [2, 0, 0], [2, 0, 2], [2, 2, 2]], [[0, 0, 0], [2, 0, 0], [0, 2, 2], [2, 2, 2]], [[0, 0, 0], [0, 2, 0], [2, 2, 0], [0, 0, 2]], [[0, 0, 0], [0, 2, 0], [2, 2, 0], [2, 0, 2]], [[0, 0, 0], [0, 2, 0], [2, 2, 0], [0, 2, 2]], [[0, 0, 0], [0, 2, 0], [2, 2, 0], [2, 2, 2]], [[0, 0, 0], [0, 2, 0], [0, 0, 2], [2, 0, 2]], [[0, 0, 0], [0, 2, 0], [0, 0, 2], [0, 2, 2]], [[0, 0, 0], [0, 2, 0], [0, 0, 2], [2, 2, 2]], [[0, 0, 0], [0, 2, 0], [2, 0, 2], [0, 2, 2]], [[0, 0, 0], [0, 2, 0], [2, 0, 2], [2, 2, 2]], [[0, 0, 0], [0, 2, 0], [0, 2, 2], [2, 2, 2]], [[0, 0, 0], [2, 2, 0], [0, 0, 2], [2, 0, 2]], [[0, 0, 0], [2, 2, 0], [0, 0, 2], [0, 2, 2]], [[0, 0, 0], [2, 2, 0], [0, 0, 2], [2, 2, 2]], [[0, 0, 0], [2, 2, 0], [2, 0, 2], [0, 2, 2]], [[0, 0, 0], [2, 2, 0], [2, 0, 2], [2, 2, 2]], [[0, 0, 0], [2, 2, 0], [0, 2, 2], [2, 2, 2]], [[0, 0, 0], [0, 0, 2], [2, 0, 2], [0, 2, 2]], [[0, 0, 0], [0, 0, 2], [2, 0, 2], [2, 2, 2]], [[0, 0, 0], [0, 0, 2], [0, 2, 2], [2, 2, 2]], [[0, 0, 0], [2, 0, 2], [0, 2, 2], [2, 2, 2]], [[2, 0, 0], [0, 2, 0], [2, 2, 0], [0, 0, 2]], [[2, 0, 0], [0, 2, 0], [2, 2, 0], [2, 0, 2]], [[2, 0, 0], [0, 2, 0], [2, 2, 0], [0, 2, 2]], [[2, 0, 0], [0, 2, 0], [2, 2, 0], [2, 2, 2]], [[2, 0, 0], [0, 2, 0], [0, 0, 2], [2, 0, 2]], [[2, 0, 0], [0, 2, 0], [0, 0, 2], [0, 2, 2]], [[2, 0, 0], [0, 2, 0], [0, 0, 2], [2, 2, 2]], [[2, 0, 0], [0, 2, 0], [2, 0, 2], [0, 2, 2]], [[2, 0, 0], [0, 2, 0], [2, 0, 2], [2, 2, 2]], [[2, 0, 0], [0, 2, 0], [0, 2, 2], [2, 2, 2]], [[2, 0, 0], [2, 2, 0], [0, 0, 2], [2, 0, 2]], [[2, 0, 0], [2, 2, 0], [0, 0, 2], [0, 2, 2]], [[2, 0, 0], [2, 2, 0], [0, 0, 2], [2, 2, 2]], [[2, 0, 0], [2, 2, 0], [2, 0, 2], [0, 2, 2]], [[2, 0, 0], [2, 2, 0], [2, 0, 2], [2, 2, 2]], [[2, 0, 0], [2, 2, 0], [0, 2, 2], [2, 2, 2]], [[2, 0, 0], [0, 0, 2], [2, 0, 2], [0, 2, 2]], [[2, 0, 0], [0, 0, 2], [2, 0, 2], [2, 2, 2]], [[2, 0, 0], [0, 0, 2], [0, 2, 2], [2, 2, 2]], [[2, 0, 0], [2, 0, 2], [0, 2, 2], [2, 2, 2]], [[0, 2, 0], [2, 2, 0], [0, 0, 2], [2, 0, 2]], [[0, 2, 0], [2, 2, 0], [0, 0, 2], [0, 2, 2]], [[0, 2, 0], [2, 2, 0], [0, 0, 2], [2, 2, 2]], [[0, 2, 0], [2, 2, 0], [2, 0, 2], [0, 2, 2]], [[0, 2, 0], [2, 2, 0], [2, 0, 2], [2, 2, 2]], [[0, 2, 0], [2, 2, 0], [0, 2, 2], [2, 2, 2]], [[0, 2, 0], [0, 0, 2], [2, 0, 2], [0, 2, 2]], [[0, 2, 0], [0, 0, 2], [2, 0, 2], [2, 2, 2]], [[0, 2, 0], [0, 0, 2], [0, 2, 2], [2, 2, 2]], [[0, 2, 0], [2, 0, 2], [0, 2, 2], [2, 2, 2]], [[2, 2, 0], [0, 0, 2], [2, 0, 2], [0, 2, 2]], [[2, 2, 0], [0, 0, 2], [2, 0, 2], [2, 2, 2]], [[2, 2, 0], [0, 0, 2], [0, 2, 2], [2, 2, 2]], [[2, 2, 0], [2, 0, 2], [0, 2, 2], [2, 2, 2]], [[0, 0, 2], [2, 0, 2], [0, 2, 2], [2, 2, 2]]];
getEq := proc (L1::listlist) local p, S, expr; seq(geom3d:-point(p || j, L1[j]), j = 1 .. 4); geom3d:-Equation(geom3d:-sphere(S, [p1, p2, p3, p4], [x, y, z])) end proc; map(getEq, L);

But I couldn't get the result. How can get the result?


 

I want to write a plane passing through a point (in list) and parallel to a plane.

L := [[-14, 2, 3], [-13, -3, 1], [-13, -3, 5], [-13, 0, -2]]:
 with(geom3d):
point(A, L[1]):
 plane(P, 2*x+3*y+z = 0, [x, y, z]):
 n := NormalVector(P):
Equation(plane(Q, [A, n], [x, y, z]));


I tried 
t[i] := ([seq])(point(M, pt[]), pt in L):
Equation( plane(Q,t[i],n],[x,y,z]),i=1..nops(L));

It is not true. How can I repair it?

First 8 9 10 Page 10 of 10