one man

Alexey Ivanov

750 Reputation

14 Badges

8 years, 171 days
Russian Federation

Social Networks and Content at Maplesoft.com

Maple Application Center

MaplePrimes Activity


These are Posts that have been published by one man

As an addition to the post.
Non-orientable surface in the sequence of orientable surfaces. In the picture we see the equations corresponding to the current surface plot.
Just entertainment.
surfaces.mw

One way to find the equation of an ellipse circumscribed around a triangle. In this case, we solve a linear system of equations, which is obtained after fixing the values of two variables ( t1 and t2). These are five equations: three equations of the second-order curve at three vertices of the triangle and two equations of a linear combination of the coordinates of the gradient of the curve equation.
The solving of system takes place in the ELS procedure. When solving, hyperboles appear, so the program has a filter. The filter passes the equations of ellipses based on by checking the values of the invariants of the second-order curves.
FOR_ELL_ТR_OUT_PROCE_F.mw  ( Fixed comments in the text  01, 08, 2020)

An attempt to find the equation of an ellipse inscribed in a given triangle. 
The program works on the basis of the ELS procedure.  After the procedure works, the  solutions are filtered.
ELS procedure solves the system of equations f1, f2, f3, f4, f5 for the coefficients of the second-order curve.
The equation f1 corresponds to the condition that the side of the triangle intersects t a curve of the second order at one point.
The equation f2 corresponds to the condition that the point x1,x2  belongs to a curve of the second order.
Equation f3 corresponds to the condition that the side of the triangle is tangent to the second order curve at the point x1,x2.
The equation f4 is similar to the equation f2, and the equation f5 is similar to the equation f3.
FOR_ELL_ТR_PROCE.mw
For example

One of the forums asked a question: what is the maximum area of a triangle inscribed in a given ellipse x^2/16 + y^2/3 - 1 = 0? It turned out to be 9, but there are infinitely many such triangles. There was a desire to show them in one of the possible ways. This is a complete (as far as possible) set of such triangles.
(This is not an example of Maple programming; it is just an implementation of a Maple-based algorithm and the work of the Optimization package).
MAX_S_TRIAN_ANINATION.mw

A way of cutting holes on an implicit plot. This is from the field of numerical parameterization of surfaces. On the example of the surface  x3 = 0.01*exp (x1) / (0.01 + x1^4 + x2^4 + x3^4)  consider the approach to producing holes. The surface is locally parameterized in some suitable way and the place for the hole and its size are selected. In the first example, the parametrization is performed on the basis of the section of the initial surface by perpendicular planes. In the second example, "round"  parametrization. It is made on the basis of the cylinder and the planes passing through its axis. Holes can be of any size and any shape. In the figures, the cut out surface sections are colored green and are located above their own holes at an equidistant to the original surface.
HOLE_1.mwHOLE_2.mw

1 2 3 4 5 6 7 Last Page 1 of 9