MaplePrimes Questions

assuming a equations likes this:

tan(x)+y*sin(x)=1;

tan(x)-y*sin(x)=0;

I want to solve this equations using LinearSolve function(do not use solve()). I  fisrtly change tan(x)=u,y*sin(x)=v and then solve u,v using LinearSolve. finally, I obtain x=atan(u), y=v/sin(x).

the question is how can I perform the above operates neatly? I know I can achive this by using a lot of subs().but is there any tools in maple do this neatly just like IntegrationTools[Change]?

Hai everyone. I used maple 12 and have an equation as follow:

int(int(lambda[v]*lambda[t]*exp(-lambda[v]*v-lambda[t]*t), v = (1/2)*(q[p]+q[p]*t[c]*t+2*S[di]*h*t)/(h*t) .. infinity), t = 0 .. infinity)

 

and try to get an outcome as follow:

However, I cannot get the outcome like I want. The maple just diplay the equation. Any tips or suggestion?

Thanks

Regards,

Dolby87

I say 

 

A:=1

R:=8.3

T=298

 

And do A/RT and I get a number answer. Sucess!.

 

Then I close the program. Open it again. Type A/RT and it spits out A/RT.

 

How do I get to not forget what the numbers were? 

question_4.pdf

I am reciving an error code when trying to graph the right circular cylinder in the questions

Attached is what I have done with the question.

 

Any help will be greatly appreciated. 

 

I have numerically solved a system of ODEs and plotted the graphs of a[j](t) for each j=0..21.

It was clear from the picture that each a[j] has a unique zero. Is there a maple command to

locate these zeroes?

I often use RegularChains and SolveTools package. SemiAlgebraic is extremelly useful to deal with polynomial equations. However, I need some similar to Mathematica's Resolve that allows me to eliminate some variables from the description of the set. Say we have some set decribed by: for all 0<x<1, p(x,z)> 0 where p is a polynomial in x and z. Is there any Maple command that allow us to remove x and give the set only n terms of z?

has anybody any idea for this?  been stuck on it for a while now.

 

let f0 € V be any given function and define a sequence (fn)n€(No) of functions fn € V by 

f:= f0 and fn+1 =Af for all n € (N0)        #A could be the average of the four surrounding points to (i,j) or it could be an N x N matrix with spectral radius less than 1.  not entirely sure. I dont know what it should be but im sure one of you guys know.

prove that this sequence converges pointwise,

 i.e that for all i,j €  [N] x [N], foo(i,j) := limn-> oo fn(i,j) exists.   and that Δfoo=0 

 

it  says to be in the notation of (" http://www.mapleprimes.com/questions/201278-Fix-A-Syntax-Error-In-My-Simple-Function-please-Help")  but it doesnt matter if its not.  I can adapt to what its meant to be if I can get any way to prove it

Thanks in advance.

 

 

Plz help me friends ...

I gave this function ...

fuction_A.docx

i wanna extract coeffitions from this function ... for example what is the coeffition of phi(X)*psi(x)?

i used coeff ... but it had an error ..

unable compute coeff ...

i used collect ... but it had an error

what am i doing with this problem?

:(

 

I have just begun thinking of trying to make some mathematically defined objects using a 3d printer. I would be happy to hear from anyone who has done this using Maple to prepare input. Pointers for a novice in 3d printing would be appreciated.  I have access to a MakerBot Replicator 2. But the people who have it have only used it to scan objects and make 3d copies of them. 

---Edwin

Find parametric equations for the right circular cylinder having radius 3, length 12, whose axis is the z-axis and whose bottom edge lies in the plane: z=0.

 

 

Do I just define B={u1, u2, u3} being a basis for R3 and use the gram-schmidt operator to find the parametric equations?

I know that would give me an orthonrmal basis, but how do i find parametirc equations?

Hi MaplePrime-ers,

I'm using the following piece of code to (i) solve the system of symbolically, so I can (ii) evaluate equations quickly at many points of time.  This works quite well for 4 defined values, but I'm having problems adding a 5th defined value.  Specifically, solve leaves the "solution may be lost" message after taking forever.  As the symbolic solution will be run mulitple times by a optimziation algorithm, I'd ideally like to get the solve time under 2 minutes.  I've attached both executed worksheets.  Is there anything I can do to have solve work as I intend?

This first code snippet achieves what I would like to do Series_noGear.mw:

 

#Interconnection Equations
eq2[1] := FD_T + EM2_T = 0;
eq2[2] := ICE_T + GEN_T = 0;
eq2[3] := EM2_A + GEN_A + BAT_A = 0;
eq2[4] := -FD_W + EM2_W = 0;
eq2[5] := -ICE_W + GEN_W = 0;
eq2[6] := -EM2_V + GEN_V = 0;
eq2[7] := -EM2_V + BAT_V = 0;

#ICE
eq_c[1] := ICE_mdot_g= ICE_T * ICE_W;

#BAT
eq_c[2] := BAT_V = 271;

#EM2
EM2_ReqPow_eq := (-148.3) + (4.267)*abs(EM2_W) + (12.77)*abs(EM2_T) + (-0.0364)*abs(EM2_W)^2 + ( 1.16)*abs(EM2_W)*abs(EM2_T) + (-0.258)*abs(EM2_T)^2 + ( 0.0001181)*abs(EM2_W)^3 + (-0.0005994)*abs(EM2_W)^2*abs(EM2_T) + ( 0.0001171)*abs(EM2_W)*abs(EM2_T)^2 + (0.001739 )*abs(EM2_T)^3 + (-1.245e-07 )*abs(EM2_W)^4 + ( 1.2e-06)*abs(EM2_W)^3*abs(EM2_T) + ( -1.584e-06)*abs(EM2_W)^2*abs(EM2_T)^2 + ( 4.383e-07)*abs(EM2_W)*abs(EM2_T)^3 + (-2.947e-06)*abs(EM2_T)^4;
eq_c[3] := EM2_P = piecewise( EM2_T * EM2_W = 0, 0, EM2_W*EM2_T < 0,-1 * EM2_ReqPow_eq, EM2_ReqPow_eq);
eq_c[4] := EM2_A = EM2_P/EM2_V;

#GEN
GEN_ReqPow_eq:= (-5.28e-12) + ( 3.849e-14)*abs(GEN_W) + (-71.9)*abs(GEN_T) + (-1.168e-16)*abs(GEN_W)^2 +(1.296)*abs(GEN_W)*abs(GEN_T) + (2.489)*abs(GEN_T)^2 + (1.451e-19)*abs(GEN_W)^3 + (0.0001326)*abs(GEN_W)^2*abs(GEN_T) + (-0.008141)*abs(GEN_W)*abs(GEN_T)^2 + (-0.004539)*abs(GEN_T)^3 +(-6.325e-23)*abs(GEN_W)^4 + (-2.091e-07)*abs(GEN_W)^3*abs(GEN_T) + ( 3.455e-06)*abs(GEN_W)^2*abs(GEN_T)^2 + ( 2.499e-05)*abs(GEN_W)*abs(GEN_T)^3 + (-5.321e-05)*abs(GEN_T)^4;

eq_c[5] := GEN_P = piecewise(GEN_T * GEN_W = 0, 0, GEN_W*GEN_T < 0,-1 * GEN_ReqPow_eq, GEN_ReqPow_eq);
eq_c[6] := GEN_A = GEN_P/GEN_V;

#assumptions
assume(BAT_V::nonnegative);
assume(FD_W::nonnegative);

termeqs := {eq_c[1],eq_c[2],eq_c[3],eq_c[4],eq_c[5],eq_c[6]};

sys_eqs2 := termeqs union convert(eq2,set);

drivers2:= {ICE_T,ICE_W,FD_T,FD_W};
symvarnames2:=select(type,indets(convert(sys_eqs2,list)),name);
notdrivers2:=symvarnames2 minus drivers2;

sol2:=solve(sys_eqs2,notdrivers2) assuming real;

symb_sol2:=unapply(sol2,[drivers2[]]);

symb_sol2(1,2,3,5);

#Enumerate (there will generally be about 40, not 3)

count := 0;
for i1 from 1 to 3 do
     for i2 from 1 to 3 do
          for i3 from 1 to 3 do
               for i4 from 1 to 3 do
                    count := count + 1;
                    solsol2(count) := symb_sol2(i1,i2,i3,i4);
               od; 
          od;
     od;
od;
count;

This second code snippet includes the changes in bold, which make solve take forever Series_addGear.mw:

#Interconnection Equations
eq2[1] := FD_T + EM2_T = 0;
eq2[2] := ICE_T + GBb_T = 0;
eq2[3] := EM2_A + GEN_A + BAT_A = 0;
eq2[4] := -FD_W + EM2_W = 0;
eq2[5] := -ICE_W + GBb_W = 0;
eq2[6] := -EM2_V + GEN_V = 0;
eq2[7] := -EM2_V + BAT_V = 0;
eq2[8] := GBa_T + GEN_T = 0;
eq2[9] := -GBa_W + GEN_W = 0;

#ICE
eq_c[1] := ICE_mdot_g= ICE_T * ICE_W;

#BAT
eq_c[2] := BAT_V = 271;

#EM2
EM2_ReqPow_eq := (-148.3) + (4.267)*abs(EM2_W) + (12.77)*abs(EM2_T) + (-0.0364)*abs(EM2_W)^2 + ( 1.16)*abs(EM2_W)*abs(EM2_T) + (-0.258)*abs(EM2_T)^2 + ( 0.0001181)*abs(EM2_W)^3 + (-0.0005994)*abs(EM2_W)^2*abs(EM2_T) + ( 0.0001171)*abs(EM2_W)*abs(EM2_T)^2 + (0.001739 )*abs(EM2_T)^3 + (-1.245e-07 )*abs(EM2_W)^4 + ( 1.2e-06)*abs(EM2_W)^3*abs(EM2_T) + ( -1.584e-06)*abs(EM2_W)^2*abs(EM2_T)^2 + ( 4.383e-07)*abs(EM2_W)*abs(EM2_T)^3 + (-2.947e-06)*abs(EM2_T)^4;
eq_c[3] := EM2_P = piecewise( EM2_T * EM2_W = 0, 0, EM2_W*EM2_T < 0,-1 * EM2_ReqPow_eq, EM2_ReqPow_eq);
eq_c[4] := EM2_A = EM2_P/EM2_V;

#GEN
GEN_ReqPow_eq:= (-5.28e-12) + ( 3.849e-14)*abs(GEN_W) + (-71.9)*abs(GEN_T) + (-1.168e-16)*abs(GEN_W)^2 +(1.296)*abs(GEN_W)*abs(GEN_T) + (2.489)*abs(GEN_T)^2 + (1.451e-19)*abs(GEN_W)^3 + (0.0001326)*abs(GEN_W)^2*abs(GEN_T) + (-0.008141)*abs(GEN_W)*abs(GEN_T)^2 + (-0.004539)*abs(GEN_T)^3 +(-6.325e-23)*abs(GEN_W)^4 + (-2.091e-07)*abs(GEN_W)^3*abs(GEN_T) + ( 3.455e-06)*abs(GEN_W)^2*abs(GEN_T)^2 + ( 2.499e-05)*abs(GEN_W)*abs(GEN_T)^3 + (-5.321e-05)*abs(GEN_T)^4;

eq_c[5] := GEN_P = piecewise(GEN_T * GEN_W = 0, 0, GEN_W*GEN_T < 0,-1 * GEN_ReqPow_eq, GEN_ReqPow_eq);
eq_c[6] := GEN_A = GEN_P/GEN_V;

#GB
eq_c[7] := GBb_T = -1/GB_R * GBa_T;
eq_c[8] := GBb_W = GB_R * GBa_W;

assume(BAT_V::nonnegative);
assume(FD_W::nonnegative);
assume(GB_R::nonnegative);

termeqs := {eq_c[1],eq_c[2],eq_c[3],eq_c[4],eq_c[5],eq_c[6],eq_c[7],eq_c[8]};

sys_eqs2 := termeqs union convert(eq2,set);

drivers2:= {GB_R,ICE_T,ICE_W,FD_T,FD_W};
symvarnames2:=select(type,indets(convert(sys_eqs2,list)),name);
notdrivers2:=symvarnames2 minus drivers2;

sol2:=solve(sys_eqs2,notdrivers2) assuming real;

symb_sol2:=unapply(sol2,[drivers2[]]);

 

Does assume make solve work faster, or just complicate things?  Any help is greatly appreciated!

 

Series_addGear.mw

Series_noGear.mw

Hello there

I have to plot wavelet frame functions (framelet) using Maple. Can I send you the figure and help me to learn how to plot it and send me the code. I will pay for you if you can do it. 

Thank you

Hi,

I want to display the matrix M, I used return M, in this procedure, but no matrix M displayed.

restart;
N:=2:
N:=2;
ff:=proc(N)
local M,i,p;
M:=array(1..2*N+1,1..2*N+1):
for i from 1 to 2*N+1 do
for  p from 1  to 2*N+1  do
   if p=1 then M[p,i]:=-2;
    elif  p=2*N+1  then M[p,i]:=-3;
else
M[p,i]:=0;
end if; end do; end do;
return M;
end proc;

 

Many thinks

I'm trying to analytically solve for a Laplace's equation in a unit square with the following BCs: u(x,0) = 0, u(y,0) = 0, u(1,y) = 0, u(x,1) = 1

The series solution to this problem is well-known, where u(x,y) is solved with separation of variables to obtain u in terms of sin and sinh series.

I try to recreate the solution with pdsolve but am stuck with it.

My attempt:

 

lap2d := diff(u(x,y), x, x) + diff(u(x,y), y, y) = 0

sol := pdsolve(lap2d, HINT = X(x)*Y(y), build)  % saw this in mapleprimes

With this I managed to get an expression for u(x,y). My trouble is with the coefficients: _C1, _C2, _C3, _C4, _c_1

_C1 .. _C4 are clearly from integrations, but I am not clear about _c_1?

To solve for the constants of integrations, I tried to set up simultaneuous equations with the BCs.

For example,

eq1 := eval( rhs(sol), x=0) = 0

Similarly, repeat for the other 3 BCs to get eq2, eq3, eq4

I tried to solve these simultaneous eqns with:

solve({eq1, eq2, eq3, eq4}, {_C1, _C2, _C3, _C4})

but Maple does not output anyting.

Need your advice if this is the right way and I just goofed up with the syntax, or there are better ways to construct the series solution of the problem. Should I use linearsolve to find the C's?

I use Maple 17.

 

Thanks in advance

 

 

Who knows: is there a maple command for two matrix multiplication element by element without summing?

 

First 1438 1439 1440 1441 1442 1443 1444 Last Page 1440 of 2434