335 Reputation

4 years, 276 days
unemployed
hobo
Perth, Australia

How to get maple to evaluate divergent s...

Maple

Series 2:Hi i was wondering if someone could explain how i can get series like this to evaluate to infinity, or a float placeholder for i mean.

Series 1:Any then also explain the mathematics as to how the this series converges to a negative limit please.

 >
 (1)
 >
 (2)
 >

 >
 (1)
 >
 (2)
 >

Set Reduction to unique elements...

Maple

In the original worksheet that these were produced, upon closing the within set brackets they do not reduce to the unique elements. But in copying the output to a new worksheet as shown, they do reduce.

 >
 (1)
 >
 >
 (2)
 >

latex code too long...

Maple

I think that maple is actually evaluating this series into what ever ridiculously long closed form expression the expansion of the series has, but i just want the latex for what i have entered.

How do i tell maple to not evaluate something?

 >
 a_{{p,q}}= \left( -4\, \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{2}+8\, \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2} \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{ 2}-8\,\sin \left( {\frac {\pi \,p}{q}} \right) \cos \left( {\frac { \pi \,p}{q}} \right) \sin \left( {\frac {\pi }{q}} \right) \cos  \left( {\frac {\pi }{q}} \right) +3-4\, \left( \cos \left( {\frac { \pi \,p}{q}} \right)  \right) ^{2} \right)  \left( \cos \left( {\frac {\pi \, \left( q+1 \right) }{q}} \right)  \right) ^{2}+ \left( -4\,  \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{2}+8\,  \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2} \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{2}-8\,\sin \left( { \frac {\pi \,p}{q}} \right) \cos \left( {\frac {\pi \,p}{q}} \right) \sin \left( {\frac {\pi }{q}} \right) \cos \left( {\frac {\pi }{q}}  \right) +3-4\, \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2} \right)  \left( \cos \left( {\frac {\pi \, \left( q+1  \right) p}{q}} \right)  \right) ^{2}+ \left( 8\, \left( \cos \left( { \frac {\pi }{q}} \right)  \right) ^{2}-16\, \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2} \left( \cos \left( {\frac {\pi }{q }} \right)  \right) ^{2}+16\,\sin \left( {\frac {\pi \,p}{q}} \right) \cos \left( {\frac {\pi \,p}{q}} \right) \sin \left( {\frac {\pi }{q}}  \right) \cos \left( {\frac {\pi }{q}} \right) -6+8\, \left( \cos  \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2} \right)  \left( \cos \left( {\frac {\pi \, \left( q+1 \right) p}{q}} \right)  \right) ^{2} \left( \cos \left( {\frac {\pi \, \left( q+1 \right) }{q}}  \right)  \right) ^{2}+ \left( 8\,\sin \left( {\frac {\pi \,p}{q}}  \right) \cos \left( {\frac {\pi \,p}{q}} \right)  \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{4}-4\, \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{3}\sin \left( {\frac {\pi }{q}} \right) +8\, \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2}  \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{3}\sin  \left( {\frac {\pi }{q}} \right) -4\,\sin \left( {\frac {\pi \,p}{q}}  \right) \cos \left( {\frac {\pi \,p}{q}} \right)  \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{2}-8\,\sin \left( {\frac {\pi \,p }{q}} \right)  \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{3} \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{ 2}-8\,\sin \left( {\frac {\pi }{q}} \right) \cos \left( {\frac {\pi }{ q}} \right)  \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{4}+\sin \left( {\frac {\pi }{q}} \right) \cos \left( {\frac {\pi }{q }} \right) +4\, \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2}\sin \left( {\frac {\pi }{q}} \right) \cos \left( {\frac {\pi }{q}} \right) +4\,\sin \left( {\frac {\pi \,p}{q}} \right)  \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{3}-\sin  \left( {\frac {\pi \,p}{q}} \right) \cos \left( {\frac {\pi \,p}{q}}  \right)  \right) \sin \left( {\frac {\pi \, \left( q+1 \right) }{q}}  \right) \cos \left( {\frac {\pi \, \left( q+1 \right) }{q}} \right)  \left( - \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2 }+ \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{2} \right) ^{-1}+ \left( 8\,\sin \left( {\frac {\pi \,p}{q}} \right) \cos \left( {\frac {\pi \,p}{q}} \right)  \left( \cos \left( {\frac {\pi }{q}}  \right)  \right) ^{4}-4\, \left( \cos \left( {\frac {\pi }{q}}  \right)  \right) ^{3}\sin \left( {\frac {\pi }{q}} \right) +8\,  \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2} \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{3}\sin \left( {\frac {\pi }{q}} \right) -4\,\sin \left( {\frac {\pi \,p}{q}} \right) \cos  \left( {\frac {\pi \,p}{q}} \right)  \left( \cos \left( {\frac {\pi } {q}} \right)  \right) ^{2}-8\,\sin \left( {\frac {\pi \,p}{q}}  \right)  \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{3 } \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{2}-8\,\sin  \left( {\frac {\pi }{q}} \right) \cos \left( {\frac {\pi }{q}}  \right)  \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{4 }+\sin \left( {\frac {\pi }{q}} \right) \cos \left( {\frac {\pi }{q}}  \right) +4\, \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2}\sin \left( {\frac {\pi }{q}} \right) \cos \left( {\frac {\pi }{q}} \right) +4\,\sin \left( {\frac {\pi \,p}{q}} \right)  \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{3}-\sin  \left( {\frac {\pi \,p}{q}} \right) \cos \left( {\frac {\pi \,p}{q}}  \right)  \right) \sin \left( {\frac {\pi \, \left( q+1 \right) p}{q}}  \right) \cos \left( {\frac {\pi \, \left( q+1 \right) p}{q}} \right)  \left( - \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2 }+ \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{2} \right) ^{-1}-2\, \left( 8\,\sin \left( {\frac {\pi \,p}{q}} \right) \cos  \left( {\frac {\pi \,p}{q}} \right)  \left( \cos \left( {\frac {\pi } {q}} \right)  \right) ^{4}-4\, \left( \cos \left( {\frac {\pi }{q}}  \right)  \right) ^{3}\sin \left( {\frac {\pi }{q}} \right) +8\,  \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2} \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{3}\sin \left( {\frac {\pi }{q}} \right) -4\,\sin \left( {\frac {\pi \,p}{q}} \right) \cos  \left( {\frac {\pi \,p}{q}} \right)  \left( \cos \left( {\frac {\pi } {q}} \right)  \right) ^{2}-8\,\sin \left( {\frac {\pi \,p}{q}}  \right)  \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{3 } \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{2}-8\,\sin  \left( {\frac {\pi }{q}} \right) \cos \left( {\frac {\pi }{q}}  \right)  \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{4 }+\sin \left( {\frac {\pi }{q}} \right) \cos \left( {\frac {\pi }{q}}  \right) +4\, \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2}\sin \left( {\frac {\pi }{q}} \right) \cos \left( {\frac {\pi }{q}} \right) +4\,\sin \left( {\frac {\pi \,p}{q}} \right)  \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{3}-\sin  \left( {\frac {\pi \,p}{q}} \right) \cos \left( {\frac {\pi \,p}{q}}  \right)  \right)  \left( \cos \left( {\frac {\pi \, \left( q+1  \right) p}{q}} \right)  \right) ^{2}\sin \left( {\frac {\pi \,  \left( q+1 \right) }{q}} \right) \cos \left( {\frac {\pi \, \left( q+ 1 \right) }{q}} \right)  \left( - \left( \cos \left( {\frac {\pi \,p}{ q}} \right)  \right) ^{2}+ \left( \cos \left( {\frac {\pi }{q}}  \right)  \right) ^{2} \right) ^{-1}-2\, \left( 8\,\sin \left( {\frac {\pi \,p}{q}} \right) \cos \left( {\frac {\pi \,p}{q}} \right)  \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{4}-4\,  \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{3}\sin  \left( {\frac {\pi }{q}} \right) +8\, \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2} \left( \cos \left( {\frac {\pi }{q}}  \right)  \right) ^{3}\sin \left( {\frac {\pi }{q}} \right) -4\,\sin  \left( {\frac {\pi \,p}{q}} \right) \cos \left( {\frac {\pi \,p}{q}}  \right)  \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{2}-8 \,\sin \left( {\frac {\pi \,p}{q}} \right)  \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{3} \left( \cos \left( {\frac {\pi }{q }} \right)  \right) ^{2}-8\,\sin \left( {\frac {\pi }{q}} \right) \cos  \left( {\frac {\pi }{q}} \right)  \left( \cos \left( {\frac {\pi \,p} {q}} \right)  \right) ^{4}+\sin \left( {\frac {\pi }{q}} \right) \cos  \left( {\frac {\pi }{q}} \right) +4\, \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2}\sin \left( {\frac {\pi }{q}} \right) \cos \left( {\frac {\pi }{q}} \right) +4\,\sin \left( {\frac {\pi \,p} {q}} \right)  \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{3}-\sin \left( {\frac {\pi \,p}{q}} \right) \cos \left( { \frac {\pi \,p}{q}} \right)  \right) \sin \left( {\frac {\pi \,  \left( q+1 \right) p}{q}} \right) \cos \left( {\frac {\pi \, \left( q +1 \right) p}{q}} \right)  \left( \cos \left( {\frac {\pi \, \left( q+ 1 \right) }{q}} \right)  \right) ^{2} \left( - \left( \cos \left( { \frac {\pi \,p}{q}} \right)  \right) ^{2}+ \left( \cos \left( {\frac { \pi }{q}} \right)  \right) ^{2} \right) ^{-1}+ \left( -8\, \left( \cos  \left( {\frac {\pi }{q}} \right)  \right) ^{2}+16\, \left( \cos  \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2} \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{2}-16\,\sin \left( {\frac {\pi \, p}{q}} \right) \cos \left( {\frac {\pi \,p}{q}} \right) \sin \left( { \frac {\pi }{q}} \right) \cos \left( {\frac {\pi }{q}} \right) +6-8\,  \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2}  \right) \sin \left( {\frac {\pi \, \left( q+1 \right) p}{q}} \right) \cos \left( {\frac {\pi \, \left( q+1 \right) p}{q}} \right) \sin  \left( {\frac {\pi \, \left( q+1 \right) }{q}} \right) \cos \left( { \frac {\pi \, \left( q+1 \right) }{q}} \right) - \left( -4\, \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{2}+8\, \left( \cos  \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2} \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{2}-8\,\sin \left( {\frac {\pi \,p }{q}} \right) \cos \left( {\frac {\pi \,p}{q}} \right) \sin \left( { \frac {\pi }{q}} \right) \cos \left( {\frac {\pi }{q}} \right) +3-4\,  \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2}  \right)  \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{2}-  \left( -4\, \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{2 }+8\, \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2}  \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{2}-8\,\sin  \left( {\frac {\pi \,p}{q}} \right) \cos \left( {\frac {\pi \,p}{q}}  \right) \sin \left( {\frac {\pi }{q}} \right) \cos \left( {\frac { \pi }{q}} \right) +3-4\, \left( \cos \left( {\frac {\pi \,p}{q}}  \right)  \right) ^{2} \right)  \left( \cos \left( {\frac {\pi \,p}{q} } \right)  \right) ^{2}- \left( 8\, \left( \cos \left( {\frac {\pi }{q }} \right)  \right) ^{2}-16\, \left( \cos \left( {\frac {\pi \,p}{q}}  \right)  \right) ^{2} \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{2}+16\,\sin \left( {\frac {\pi \,p}{q}} \right) \cos  \left( {\frac {\pi \,p}{q}} \right) \sin \left( {\frac {\pi }{q}}  \right) \cos \left( {\frac {\pi }{q}} \right) -6+8\, \left( \cos  \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2} \right)  \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2} \left( \cos  \left( {\frac {\pi }{q}} \right)  \right) ^{2}- \left( 8\,\sin  \left( {\frac {\pi \,p}{q}} \right) \cos \left( {\frac {\pi \,p}{q}}  \right)  \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{4}-4 \, \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{3}\sin  \left( {\frac {\pi }{q}} \right) +8\, \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2} \left( \cos \left( {\frac {\pi }{q}}  \right)  \right) ^{3}\sin \left( {\frac {\pi }{q}} \right) -4\,\sin  \left( {\frac {\pi \,p}{q}} \right) \cos \left( {\frac {\pi \,p}{q}}  \right)  \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{2}-8 \,\sin \left( {\frac {\pi \,p}{q}} \right)  \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{3} \left( \cos \left( {\frac {\pi }{q }} \right)  \right) ^{2}-8\,\sin \left( {\frac {\pi }{q}} \right) \cos  \left( {\frac {\pi }{q}} \right)  \left( \cos \left( {\frac {\pi \,p} {q}} \right)  \right) ^{4}+\sin \left( {\frac {\pi }{q}} \right) \cos  \left( {\frac {\pi }{q}} \right) +4\, \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2}\sin \left( {\frac {\pi }{q}} \right) \cos \left( {\frac {\pi }{q}} \right) +4\,\sin \left( {\frac {\pi \,p} {q}} \right)  \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{3}-\sin \left( {\frac {\pi \,p}{q}} \right) \cos \left( { \frac {\pi \,p}{q}} \right)  \right) \sin \left( {\frac {\pi }{q}}  \right) \cos \left( {\frac {\pi }{q}} \right)  \left( - \left( \cos  \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2}+ \left( \cos  \left( {\frac {\pi }{q}} \right)  \right) ^{2} \right) ^{-1}- \left( 8\,\sin \left( {\frac {\pi \,p}{q}} \right) \cos \left( {\frac {\pi \, p}{q}} \right)  \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{4}-4\, \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{3} \sin \left( {\frac {\pi }{q}} \right) +8\, \left( \cos \left( {\frac { \pi \,p}{q}} \right)  \right) ^{2} \left( \cos \left( {\frac {\pi }{q} } \right)  \right) ^{3}\sin \left( {\frac {\pi }{q}} \right) -4\,\sin  \left( {\frac {\pi \,p}{q}} \right) \cos \left( {\frac {\pi \,p}{q}}  \right)  \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{2}-8 \,\sin \left( {\frac {\pi \,p}{q}} \right)  \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{3} \left( \cos \left( {\frac {\pi }{q }} \right)  \right) ^{2}-8\,\sin \left( {\frac {\pi }{q}} \right) \cos  \left( {\frac {\pi }{q}} \right)  \left( \cos \left( {\frac {\pi \,p} {q}} \right)  \right) ^{4}+\sin \left( {\frac {\pi }{q}} \right) \cos  \left( {\frac {\pi }{q}} \right) +4\, \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2}\sin \left( {\frac {\pi }{q}} \right) \cos \left( {\frac {\pi }{q}} \right) +4\,\sin \left( {\frac {\pi \,p} {q}} \right)  \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{3}-\sin \left( {\frac {\pi \,p}{q}} \right) \cos \left( { \frac {\pi \,p}{q}} \right)  \right) \sin \left( {\frac {\pi \,p}{q}}  \right) \cos \left( {\frac {\pi \,p}{q}} \right)  \left( - \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2}+ \left( \cos  \left( {\frac {\pi }{q}} \right)  \right) ^{2} \right) ^{-1}+2\,  \left( 8\,\sin \left( {\frac {\pi \,p}{q}} \right) \cos \left( { \frac {\pi \,p}{q}} \right)  \left( \cos \left( {\frac {\pi }{q}}  \right)  \right) ^{4}-4\, \left( \cos \left( {\frac {\pi }{q}}  \right)  \right) ^{3}\sin \left( {\frac {\pi }{q}} \right) +8\,  \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2} \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{3}\sin \left( {\frac {\pi }{q}} \right) -4\,\sin \left( {\frac {\pi \,p}{q}} \right) \cos  \left( {\frac {\pi \,p}{q}} \right)  \left( \cos \left( {\frac {\pi } {q}} \right)  \right) ^{2}-8\,\sin \left( {\frac {\pi \,p}{q}}  \right)  \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{3 } \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{2}-8\,\sin  \left( {\frac {\pi }{q}} \right) \cos \left( {\frac {\pi }{q}}  \right)  \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{4 }+\sin \left( {\frac {\pi }{q}} \right) \cos \left( {\frac {\pi }{q}}  \right) +4\, \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2}\sin \left( {\frac {\pi }{q}} \right) \cos \left( {\frac {\pi }{q}} \right) +4\,\sin \left( {\frac {\pi \,p}{q}} \right)  \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{3}-\sin  \left( {\frac {\pi \,p}{q}} \right) \cos \left( {\frac {\pi \,p}{q}}  \right)  \right)  \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2}\sin \left( {\frac {\pi }{q}} \right) \cos \left( {\frac {\pi }{q}} \right)  \left( - \left( \cos \left( {\frac {\pi \,p}{q}}  \right)  \right) ^{2}+ \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{2} \right) ^{-1}+2\, \left( 8\,\sin \left( {\frac {\pi \,p} {q}} \right) \cos \left( {\frac {\pi \,p}{q}} \right)  \left( \cos  \left( {\frac {\pi }{q}} \right)  \right) ^{4}-4\, \left( \cos  \left( {\frac {\pi }{q}} \right)  \right) ^{3}\sin \left( {\frac { \pi }{q}} \right) +8\, \left( \cos \left( {\frac {\pi \,p}{q}}  \right)  \right) ^{2} \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{3}\sin \left( {\frac {\pi }{q}} \right) -4\,\sin \left( { \frac {\pi \,p}{q}} \right) \cos \left( {\frac {\pi \,p}{q}} \right)  \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{2}-8\,\sin  \left( {\frac {\pi \,p}{q}} \right)  \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{3} \left( \cos \left( {\frac {\pi }{q}}  \right)  \right) ^{2}-8\,\sin \left( {\frac {\pi }{q}} \right) \cos  \left( {\frac {\pi }{q}} \right)  \left( \cos \left( {\frac {\pi \,p} {q}} \right)  \right) ^{4}+\sin \left( {\frac {\pi }{q}} \right) \cos  \left( {\frac {\pi }{q}} \right) +4\, \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2}\sin \left( {\frac {\pi }{q}} \right) \cos \left( {\frac {\pi }{q}} \right) +4\,\sin \left( {\frac {\pi \,p} {q}} \right)  \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{3}-\sin \left( {\frac {\pi \,p}{q}} \right) \cos \left( { \frac {\pi \,p}{q}} \right)  \right) \sin \left( {\frac {\pi \,p}{q}}  \right) \cos \left( {\frac {\pi \,p}{q}} \right)  \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{2} \left( - \left( \cos \left( { \frac {\pi \,p}{q}} \right)  \right) ^{2}+ \left( \cos \left( {\frac { \pi }{q}} \right)  \right) ^{2} \right) ^{-1}- \left( -8\, \left( \cos  \left( {\frac {\pi }{q}} \right)  \right) ^{2}+16\, \left( \cos  \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2} \left( \cos \left( {\frac {\pi }{q}} \right)  \right) ^{2}-16\,\sin \left( {\frac {\pi \, p}{q}} \right) \cos \left( {\frac {\pi \,p}{q}} \right) \sin \left( { \frac {\pi }{q}} \right) \cos \left( {\frac {\pi }{q}} \right) +6-8\,  \left( \cos \left( {\frac {\pi \,p}{q}} \right)  \right) ^{2}  \right) \sin \left( {\frac {\pi \,p}{q}} \right) \cos \left( {\frac { \pi \,p}{q}} \right) \sin \left( {\frac {\pi }{q}} \right) \cos  \left( {\frac {\pi }{q}} \right)
 >

Questions allowed...

Maple

Are we allowed to ask questions about only math or does it have to only be a problem with maple code?

Unknown Error For no apparent reason...

Maple 16

I am getting this error for almost everything that i write in maple today, and i simply have no idea what causes it or what it means

 >
 >