## 25 Reputation

4 years, 297 days

## fix the plot command...

Maple

restart;
l := -2;
-2
m := 1;
1
k := sqrt(-1/(6*beta))/l;
(1/2)
1  /   6  \
- -- |- ----|
12 \  beta/
w := (1/5)*alpha/(beta*l);
alpha
- -------
10 beta
a[2] := -12*sqrt(-1/(6*beta))*alpha*m^2/(5*l*l);
(1/2)
1  /   6  \
- -- |- ----|      alpha
10 \  beta/
a[0] := 0;
0
a[1] := 0;
0
F := -l*C[1]/(m*(C[1]+cosh(l*(xi+xi[0]))-sinh(l*(xi+xi[0]))));
2 C[1]
--------------------------------------------------
C[1] + cosh(2 xi + 2 xi[0]) + sinh(2 xi + 2 xi[0])
beta := -2;
-2
alpha := 3;
3
C[1] := -1/1000;
-1
----
1000
xi[0] := 1;
1
xi := k*x-t*w;
1   (1/2)     3
- -- 3      x - -- t
12            20

u := a[0]+a[1]*F+a[2]*F*F;
/   (1/2)\//        /   1
- \3 3     / |2500000 |- ----
\        \  1000

/1  (1/2)     3        /  1   (1/2)     3   \   \
+ cosh|- 3      x + -- t - 2 |- -- 3      x - -- t|[0]|
\6            10       \  12            20  /   /

/1  (1/2)     3        /  1   (1/2)     3   \   \\  \
- sinh|- 3      x + -- t - 2 |- -- 3      x - -- t|[0]||^2|
\6            10       \  12            20  /   //  /

plot3d(u, x = -3 .. 3, t = -3 .. 3);
Warning, unable to evaluate the function to numeric values in the region; see the plotting command's help page to ensure the calling sequence is correct

## write equation in maple expression...

Maple

iqt + aqxy + ibq (qq*x − q*qx) = 0. write this equation in maple

## solve problem how to fix it...

Maple 18

restart;
T := K+F(xi)*F(xi);
2
K + F(xi)
U := alpha[0]+alpha[1]*(m+F(xi))+beta[1]/(m+F(xi))+alpha[2]*(m+F(xi))*(m+F(xi))+beta[2]/(m+F(xi))^2;
beta[1]
alpha[0] + alpha[1] (m + F(xi)) + ---------
m + F(xi)

2     beta[2]
+ alpha[2] (m + F(xi))  + ------------
2
(m + F(xi))
diff(U, xi);
/ d        \
beta[1] |---- F(xi)|
/ d        \           \ dxi      /
alpha[1] |---- F(xi)| - --------------------
\ dxi      /                  2
(m + F(xi))

/ d        \
2 beta[2] |---- F(xi)|
/ d        \             \ dxi      /
+ 2 alpha[2] (m + F(xi)) |---- F(xi)| - ----------------------
\ dxi      /                   3
(m + F(xi))
d := alpha[1]*T-beta[1]*T/(m+F(xi))^2+2*alpha[2]*(m+F(xi))*T-2*beta[2]*T/(m+F(xi))^3;
/         2\
/         2\   beta[1] \K + F(xi) /
alpha[1] \K + F(xi) / - --------------------
2
(m + F(xi))

/         2\
/         2\   2 beta[2] \K + F(xi) /
+ 2 alpha[2] (m + F(xi)) \K + F(xi) / - ----------------------
3
(m + F(xi))
diff(d, xi);
/ d        \
2 beta[1] F(xi) |---- F(xi)|
/ d        \                   \ dxi      /
2 alpha[1] F(xi) |---- F(xi)| - ----------------------------
\ dxi      /                      2
(m + F(xi))

/         2\ / d        \
2 beta[1] \K + F(xi) / |---- F(xi)|
\ dxi      /
+ -----------------------------------
3
(m + F(xi))

/ d        \ /         2\
+ 2 alpha[2] |---- F(xi)| \K + F(xi) /
\ dxi      /

/ d        \
+ 4 alpha[2] (m + F(xi)) F(xi) |---- F(xi)|
\ dxi      /

/ d        \
4 beta[2] F(xi) |---- F(xi)|
\ dxi      /
- ----------------------------
3
(m + F(xi))

/         2\ / d        \
6 beta[2] \K + F(xi) / |---- F(xi)|
\ dxi      /
+ -----------------------------------
4
(m + F(xi))
collect(%, diff);
/                                               /         2\
|                   2 beta[1] F(xi)   2 beta[1] \K + F(xi) /
|2 alpha[1] F(xi) - --------------- + ----------------------
|                               2                     3
\                    (m + F(xi))           (m + F(xi))

/         2\
+ 2 alpha[2] \K + F(xi) / + 4 alpha[2] (m + F(xi)) F(xi)

/         2\\
4 beta[2] F(xi)   6 beta[2] \K + F(xi) /| / d        \
- --------------- + ----------------------| |---- F(xi)|
3                     4     | \ dxi      /
(m + F(xi))           (m + F(xi))      /
S := (2*alpha[1]*F(xi)-2*beta[1]*F(xi)/(m+F(xi))^2+2*beta[1]*(K+F(xi)^2)/(m+F(xi))^3+2*alpha[2]*(K+F(xi)^2)+4*alpha[2]*(m+F(xi))*F(xi)-4*beta[2]*F(xi)/(m+F(xi))^3+6*beta[2]*(K+F(xi)^2)/(m+F(xi))^4)*T;
/                                               /         2\
|                   2 beta[1] F(xi)   2 beta[1] \K + F(xi) /
|2 alpha[1] F(xi) - --------------- + ----------------------
|                               2                     3
\                    (m + F(xi))           (m + F(xi))

/         2\
+ 2 alpha[2] \K + F(xi) / + 4 alpha[2] (m + F(xi)) F(xi)

/         2\\
4 beta[2] F(xi)   6 beta[2] \K + F(xi) /| /         2\
- --------------- + ----------------------| \K + F(xi) /
3                     4     |
(m + F(xi))           (m + F(xi))      /
expand((2*w*k*k)*beta*S-(2*A*k*k)*d-2*w*U+k*U*U);
2                   2               2
-2 A k  alpha[1] K - 2 A k  alpha[1] F(xi)

2               3
- 4 A k  alpha[2] F(xi)  - 4 w alpha[2] F(xi) m

+ 2 k alpha[0] alpha[1] m + 2 k alpha[0] alpha[1] F(xi)

2 k alpha[0] beta[1]                          2
+ -------------------- + 2 k alpha[0] alpha[2] m
m + F(xi)

2   2 k alpha[0] beta[2]
+ 2 k alpha[0] alpha[2] F(xi)  + --------------------
2
(m + F(xi))

2                         3
+ 2 k alpha[1]  m F(xi) + 2 k alpha[1] m  alpha[2]

3            2 k beta[1] beta[2]
+ 2 k alpha[1] F(xi)  alpha[2] + -------------------
3
(m + F(xi))

2  3                     2  2      2
+ 4 k alpha[2]  m  F(xi) + 6 k alpha[2]  m  F(xi)

2      3                              2
+ 4 k alpha[2]  F(xi)  m - 2 w alpha[0] + k alpha[0]

2                    3        2                2
+ 4 w k  beta alpha[1] F(xi)  + 4 w k  beta alpha[2] K

2
2                    4   2 A k  beta[1] K
+ 12 w k  beta alpha[2] F(xi)  + ----------------
2
(m + F(xi))

2              2
2 A k  beta[1] F(xi)         2
+ --------------------- - 4 A k  alpha[2] m K
2
(m + F(xi))

2                 2        2
- 4 A k  alpha[2] m F(xi)  - 4 A k  alpha[2] F(xi) K

2                  2              2
4 A k  beta[2] K   4 A k  beta[2] F(xi)
+ ---------------- + ---------------------
3                    3
(m + F(xi))          (m + F(xi))

2 k alpha[1] m beta[1]
+ 4 k alpha[0] alpha[2] F(xi) m + ----------------------
m + F(xi)

2
+ 6 k alpha[1] m  alpha[2] F(xi)

2   2 k alpha[1] m beta[2]
+ 6 k alpha[1] m alpha[2] F(xi)  + ----------------------
2
(m + F(xi))

2 k alpha[1] F(xi) beta[1]   2 k alpha[1] F(xi) beta[2]
+ -------------------------- + --------------------------
m + F(xi)                              2
(m + F(xi))

2                             2
2 k beta[1] alpha[2] m    2 k beta[1] alpha[2] F(xi)
+ ----------------------- + ---------------------------
m + F(xi)                   m + F(xi)

2                             2
2 k alpha[2] m  beta[2]   2 k alpha[2] F(xi)  beta[2]
+ ----------------------- + ---------------------------
2                           2
(m + F(xi))                 (m + F(xi))

2
2  2             2      2    k beta[1]
+ k alpha[1]  m  + k alpha[1]  F(xi)  + ------------
2
(m + F(xi))

2
2  4             2      4    k beta[2]
+ k alpha[2]  m  + k alpha[2]  F(xi)  + ------------
4
(m + F(xi))

2 w beta[1]
- 2 w alpha[1] m - 2 w alpha[1] F(xi) - -----------
m + F(xi)

2                     2   2 w beta[2]
- 2 w alpha[2] m  - 2 w alpha[2] F(xi)  - ------------
2
(m + F(xi))

2                             2                     2
4 w k  beta beta[1] F(xi) K   8 w k  beta beta[1] K F(xi)
- --------------------------- + ----------------------------
2                              3
(m + F(xi))                    (m + F(xi))

2
2                           8 w k  beta beta[2] F(xi) K
+ 8 w k  beta alpha[2] F(xi) m K - ---------------------------
3
(m + F(xi))

2                     2
24 w k  beta beta[2] K F(xi)         2
+ ----------------------------- + 4 w k  beta alpha[1] F(xi) K
4
(m + F(xi))

2                   3        2               2
4 w k  beta beta[1] F(xi)    4 w k  beta beta[1] K
- -------------------------- + ----------------------
2                          3
(m + F(xi))                (m + F(xi))

2                   4
4 w k  beta beta[1] F(xi)          2                      2
+ -------------------------- + 16 w k  beta alpha[2] K F(xi)
3
(m + F(xi))

2                   3
2                    3     8 w k  beta beta[2] F(xi)
+ 8 w k  beta alpha[2] F(xi)  m - --------------------------
3
(m + F(xi))

2               2         2                   4
12 w k  beta beta[2] K    12 w k  beta beta[2] F(xi)
+ ----------------------- + ---------------------------
4                           4
(m + F(xi))                 (m + F(xi))

4 k beta[1] alpha[2] F(xi) m   4 k alpha[2] F(xi) m beta[2]
+ ---------------------------- + ----------------------------
m + F(xi)                                2
(m + F(xi))
value(%);
2                   2               2
-2 A k  alpha[1] K - 2 A k  alpha[1] F(xi)

2               3
- 4 A k  alpha[2] F(xi)  - 4 w alpha[2] F(xi) m

+ 2 k alpha[0] alpha[1] m + 2 k alpha[0] alpha[1] F(xi)

2 k alpha[0] beta[1]                          2
+ -------------------- + 2 k alpha[0] alpha[2] m
m + F(xi)

2   2 k alpha[0] beta[2]
+ 2 k alpha[0] alpha[2] F(xi)  + --------------------
2
(m + F(xi))

2                         3
+ 2 k alpha[1]  m F(xi) + 2 k alpha[1] m  alpha[2]

3            2 k beta[1] beta[2]
+ 2 k alpha[1] F(xi)  alpha[2] + -------------------
3
(m + F(xi))

2  3                     2  2      2
+ 4 k alpha[2]  m  F(xi) + 6 k alpha[2]  m  F(xi)

2      3                              2
+ 4 k alpha[2]  F(xi)  m - 2 w alpha[0] + k alpha[0]

2                    3        2                2
+ 4 w k  beta alpha[1] F(xi)  + 4 w k  beta alpha[2] K

2
2                    4   2 A k  beta[1] K
+ 12 w k  beta alpha[2] F(xi)  + ----------------
2
(m + F(xi))

2              2
2 A k  beta[1] F(xi)         2
+ --------------------- - 4 A k  alpha[2] m K
2
(m + F(xi))

2                 2        2
- 4 A k  alpha[2] m F(xi)  - 4 A k  alpha[2] F(xi) K

2                  2              2
4 A k  beta[2] K   4 A k  beta[2] F(xi)
+ ---------------- + ---------------------
3                    3
(m + F(xi))          (m + F(xi))

2 k alpha[1] m beta[1]
+ 4 k alpha[0] alpha[2] F(xi) m + ----------------------
m + F(xi)

2
+ 6 k alpha[1] m  alpha[2] F(xi)

2   2 k alpha[1] m beta[2]
+ 6 k alpha[1] m alpha[2] F(xi)  + ----------------------
2
(m + F(xi))

2 k alpha[1] F(xi) beta[1]   2 k alpha[1] F(xi) beta[2]
+ -------------------------- + --------------------------
m + F(xi)                              2
(m + F(xi))

2                             2
2 k beta[1] alpha[2] m    2 k beta[1] alpha[2] F(xi)
+ ----------------------- + ---------------------------
m + F(xi)                   m + F(xi)

2                             2
2 k alpha[2] m  beta[2]   2 k alpha[2] F(xi)  beta[2]
+ ----------------------- + ---------------------------
2                           2
(m + F(xi))                 (m + F(xi))

2
2  2             2      2    k beta[1]
+ k alpha[1]  m  + k alpha[1]  F(xi)  + ------------
2
(m + F(xi))

2
2  4             2      4    k beta[2]
+ k alpha[2]  m  + k alpha[2]  F(xi)  + ------------
4
(m + F(xi))

2 w beta[1]
- 2 w alpha[1] m - 2 w alpha[1] F(xi) - -----------
m + F(xi)

2                     2   2 w beta[2]
- 2 w alpha[2] m  - 2 w alpha[2] F(xi)  - ------------
2
(m + F(xi))

2                             2                     2
4 w k  beta beta[1] F(xi) K   8 w k  beta beta[1] K F(xi)
- --------------------------- + ----------------------------
2                              3
(m + F(xi))                    (m + F(xi))

2
2                           8 w k  beta beta[2] F(xi) K
+ 8 w k  beta alpha[2] F(xi) m K - ---------------------------
3
(m + F(xi))

2                     2
24 w k  beta beta[2] K F(xi)         2
+ ----------------------------- + 4 w k  beta alpha[1] F(xi) K
4
(m + F(xi))

2                   3        2               2
4 w k  beta beta[1] F(xi)    4 w k  beta beta[1] K
- -------------------------- + ----------------------
2                          3
(m + F(xi))                (m + F(xi))

2                   4
4 w k  beta beta[1] F(xi)          2                      2
+ -------------------------- + 16 w k  beta alpha[2] K F(xi)
3
(m + F(xi))

2                   3
2                    3     8 w k  beta beta[2] F(xi)
+ 8 w k  beta alpha[2] F(xi)  m - --------------------------
3
(m + F(xi))

2               2         2                   4
12 w k  beta beta[2] K    12 w k  beta beta[2] F(xi)
+ ----------------------- + ---------------------------
4                           4
(m + F(xi))                 (m + F(xi))

4 k beta[1] alpha[2] F(xi) m   4 k alpha[2] F(xi) m beta[2]
+ ---------------------------- + ----------------------------
m + F(xi)                                2
(m + F(xi))

expr := simplify(%);
2                   2               2
-2 A k  alpha[1] K - 2 A k  alpha[1] F(xi)

2               3
- 4 A k  alpha[2] F(xi)  - 4 w alpha[2] F(xi) m

+ 2 k alpha[0] alpha[1] m + 2 k alpha[0] alpha[1] F(xi)

2 k alpha[0] beta[1]                          2
+ -------------------- + 2 k alpha[0] alpha[2] m
m + F(xi)

2   2 k alpha[0] beta[2]
+ 2 k alpha[0] alpha[2] F(xi)  + --------------------
2
(m + F(xi))

2                         3
+ 2 k alpha[1]  m F(xi) + 2 k alpha[1] m  alpha[2]

3            2 k beta[1] beta[2]
+ 2 k alpha[1] F(xi)  alpha[2] + -------------------
3
(m + F(xi))

2  3                     2  2      2
+ 4 k alpha[2]  m  F(xi) + 6 k alpha[2]  m  F(xi)

2      3                              2
+ 4 k alpha[2]  F(xi)  m - 2 w alpha[0] + k alpha[0]

2                    3        2                2
+ 4 w k  beta alpha[1] F(xi)  + 4 w k  beta alpha[2] K

2
2                    4   2 A k  beta[1] K
+ 12 w k  beta alpha[2] F(xi)  + ----------------
2
(m + F(xi))

2              2
2 A k  beta[1] F(xi)         2
+ --------------------- - 4 A k  alpha[2] m K
2
(m + F(xi))

2                 2        2
- 4 A k  alpha[2] m F(xi)  - 4 A k  alpha[2] F(xi) K

2                  2              2
4 A k  beta[2] K   4 A k  beta[2] F(xi)
+ ---------------- + ---------------------
3                    3
(m + F(xi))          (m + F(xi))

2 k alpha[1] m beta[1]
+ 4 k alpha[0] alpha[2] F(xi) m + ----------------------
m + F(xi)

2
+ 6 k alpha[1] m  alpha[2] F(xi)

2   2 k alpha[1] m beta[2]
+ 6 k alpha[1] m alpha[2] F(xi)  + ----------------------
2
(m + F(xi))

2 k alpha[1] F(xi) beta[1]   2 k alpha[1] F(xi) beta[2]
+ -------------------------- + --------------------------
m + F(xi)                              2
(m + F(xi))

2                             2
2 k beta[1] alpha[2] m    2 k beta[1] alpha[2] F(xi)
+ ----------------------- + ---------------------------
m + F(xi)                   m + F(xi)

2                             2
2 k alpha[2] m  beta[2]   2 k alpha[2] F(xi)  beta[2]
+ ----------------------- + ---------------------------
2                           2
(m + F(xi))                 (m + F(xi))

2
2  2             2      2    k beta[1]
+ k alpha[1]  m  + k alpha[1]  F(xi)  + ------------
2
(m + F(xi))

2
2  4             2      4    k beta[2]
+ k alpha[2]  m  + k alpha[2]  F(xi)  + ------------
4
(m + F(xi))

2 w beta[1]
- 2 w alpha[1] m - 2 w alpha[1] F(xi) - -----------
m + F(xi)

2                     2   2 w beta[2]
- 2 w alpha[2] m  - 2 w alpha[2] F(xi)  - ------------
2
(m + F(xi))

2                             2                     2
4 w k  beta beta[1] F(xi) K   8 w k  beta beta[1] K F(xi)
- --------------------------- + ----------------------------
2                              3
(m + F(xi))                    (m + F(xi))

2
2                           8 w k  beta beta[2] F(xi) K
+ 8 w k  beta alpha[2] F(xi) m K - ---------------------------
3
(m + F(xi))

2                     2
24 w k  beta beta[2] K F(xi)         2
+ ----------------------------- + 4 w k  beta alpha[1] F(xi) K
4
(m + F(xi))

2                   3        2               2
4 w k  beta beta[1] F(xi)    4 w k  beta beta[1] K
- -------------------------- + ----------------------
2                          3
(m + F(xi))                (m + F(xi))

2                   4
4 w k  beta beta[1] F(xi)          2                      2
+ -------------------------- + 16 w k  beta alpha[2] K F(xi)
3
(m + F(xi))

2                   3
2                    3     8 w k  beta beta[2] F(xi)
+ 8 w k  beta alpha[2] F(xi)  m - --------------------------
3
(m + F(xi))

2               2         2                   4
12 w k  beta beta[2] K    12 w k  beta beta[2] F(xi)
+ ----------------------- + ---------------------------
4                           4
(m + F(xi))                 (m + F(xi))

4 k beta[1] alpha[2] F(xi) m   4 k alpha[2] F(xi) m beta[2]
+ ---------------------------- + ----------------------------
m + F(xi)                                2
(m + F(xi))

temp := algsubs(m+F(xi) = freeze(m+F(xi)), numer(expr));
/        2            4                    2
\4 beta k  w freeze/R0  alpha[2] + 4 beta k  w freeze/R0 beta[1]

2          \      4   /        2            5
+ 12 beta k  w beta[2]/ F(xi)  + \8 beta k  w freeze/R0  alpha

2            4
[2] + 4 beta k  w freeze/R0  alpha[1]

2            2
- 4 beta k  w freeze/R0  beta[1]

2                    \      3   /          2
- 8 beta k  w freeze/R0 beta[2]/ F(xi)  + \8 K beta k  w

4                 2          5
freeze/R0  alpha[2] - 4 A k  freeze/R0  alpha[2]

2          4                 2          2
- 2 A k  freeze/R0  alpha[1] + 2 A k  freeze/R0  beta[1]

2                                  2
+ 8 w k  beta beta[1] K freeze/R0 + 24 w k  beta beta[2] K

2                  \      2   /          2            5
+ 4 A k  beta[2] freeze/R0/ F(xi)  + \8 K beta k  w freeze/R0

2            4
alpha[2] + 4 K beta k  w freeze/R0  alpha[1]

2            2
- 4 K beta k  w freeze/R0  beta[1]

2                    \
- 8 K beta k  w freeze/R0 beta[2]/ F(xi)

2          8              6         2
+ k alpha[2]  freeze/R0  + k freeze/R0  alpha[1]

6                         5
- 2 w freeze/R0  alpha[2] - 2 w freeze/R0  alpha[1]

4           2              4
+ freeze/R0  k alpha[0]  - 2 freeze/R0  w alpha[0]

7
+ 2 k alpha[1] alpha[2] freeze/R0

6
+ 2 k freeze/R0  alpha[0] alpha[2]

5
+ 2 k freeze/R0  alpha[0] alpha[1]

5
+ 2 k freeze/R0  alpha[2] beta[1]

4
+ 2 freeze/R0  k alpha[1] beta[1]

4
+ 2 freeze/R0  k alpha[2] beta[2]

3
+ 2 k freeze/R0  alpha[0] beta[1]

3
+ 2 k freeze/R0  alpha[1] beta[2]

2
+ 2 k freeze/R0  alpha[0] beta[2]

2          5                       4    2
- 4 A K k  freeze/R0  alpha[2] - 2 freeze/R0  A k  alpha[1] K

2          2
+ 2 A K k  freeze/R0  beta[1]

4    2                2
+ 4 freeze/R0  w k  beta alpha[2] K

2               2                          3
+ 4 w k  beta beta[1] K  freeze/R0 - 2 w freeze/R0  beta[1]

2        2                2
+ k freeze/R0  beta[1]  - 2 w freeze/R0  beta[2]

2
+ 4 A k  beta[2] K freeze/R0 + 2 k beta[1] beta[2] freeze/R0

2         2               2
+ k beta[2]  + 12 w k  beta beta[2] K
thaw(collect(temp, freeze(m+F(xi)))/denom(expr));
1       /          2            8
------------ \k alpha[2]  (m + F(xi))
4
(m + F(xi))

7              6 /
+ 2 k alpha[1] alpha[2] (m + F(xi))  + (m + F(xi))  \2 k alpha

2               \   /       3       2
[0] alpha[2] + k alpha[1]  - 2 w alpha[2]/ + \8 F(xi)  beta k  w

2
alpha[2] + 8 K F(xi) beta k  w alpha[2]

2  2                   2
- 4 A F(xi)  k  alpha[2] - 4 A K k  alpha[2]

\
+ 2 k alpha[0] alpha[1] + 2 k alpha[2] beta[1] - 2 w alpha[1]/

5   /     2                    4
(m + F(xi))  + \4 w k  beta alpha[2] F(xi)

2                    3
+ 4 w k  beta alpha[1] F(xi)

/          2                   2         \      2
+ \8 K beta k  w alpha[2] - 2 A k  alpha[1]/ F(xi)

2                                   2
+ 4 w k  beta alpha[1] F(xi) K + k alpha[0]  - 2 w alpha[0]

+ 2 k alpha[1] beta[1] + 2 k alpha[2] beta[2]

2                   2                2\            4
- 2 A k  alpha[1] K + 4 w k  beta alpha[2] K / (m + F(xi))  +

(2 k alpha[0] beta[1] + 2 k alpha[1] beta[2] - 2 w beta[1])

3   /      2                   3
(m + F(xi))  + \-4 w k  beta beta[1] F(xi)

2                             2              2
- 4 w k  beta beta[1] F(xi) K + 2 A k  beta[1] F(xi)

2                                             2
+ 2 A k  beta[1] K + 2 k alpha[0] beta[2] + k beta[1]

\            2   /     2                   4
- 2 w beta[2]/ (m + F(xi))  + \4 w k  beta beta[1] F(xi)

2                   3
- 8 w k  beta beta[2] F(xi)

/          2                  2        \      2
+ \8 K beta k  w beta[1] + 4 A k  beta[2]/ F(xi)

2                             2               2
- 8 w k  beta beta[2] F(xi) K + 4 w k  beta beta[1] K

2                                \
+ 4 A k  beta[2] K + 2 k beta[1] beta[2]/ (m + F(xi))

2                   4         2                     2
+ 12 w k  beta beta[2] F(xi)  + 24 w k  beta beta[2] K F(xi)

2               2            2\
+ 12 w k  beta beta[2] K  + k beta[2] /
collect(%, F(xi));
1       //         2                        2\      8   /
------------ \\12 beta k  w alpha[2] + k alpha[2] / F(xi)  + \56
4
(m + F(xi))

2                        2                   2
beta k  m w alpha[2] + 4 beta k  w alpha[1] - 4 A k  alpha[2]

2                        \      7   /
+ 8 k m alpha[2]  + 2 k alpha[1] alpha[2]/ F(xi)  + \104 beta

2  2                         2
k  m  w alpha[2] + 16 K beta k  w alpha[2]

2                      2
+ 16 beta k  m w alpha[1] - 20 A k  m alpha[2]

2         2        2
+ 28 k m  alpha[2]  - 2 A k  alpha[1]

+ 14 k m alpha[1] alpha[2] + 2 k alpha[0] alpha[2]

2               \      6   /             2  3
+ k alpha[1]  - 2 w alpha[2]/ F(xi)  + \56 k alpha[2]  m

2
+ 42 k alpha[1] alpha[2] m

/                                  2               \
+ 6 m \2 k alpha[0] alpha[2] + k alpha[1]  - 2 w alpha[2]/

2                3         2
+ 96 w k  beta alpha[2] m  + 40 w k  beta alpha[2] K m

2           2          2
- 40 A k  alpha[2] m  - 4 A K k  alpha[2]

+ 2 k alpha[0] alpha[1] + 2 k alpha[2] beta[1] - 2 w alpha[1]

2
+ 4 w k  beta alpha[1] K

/          2                   2         \
+ 4 \8 K beta k  w alpha[2] - 2 A k  alpha[1]/ m

2                2\      5   /             2  4
+ 24 w k  beta alpha[1] m / F(xi)  + \70 k alpha[2]  m

3
+ 70 k alpha[1] m  alpha[2]

2 /                                  2               \
+ 15 m  \2 k alpha[0] alpha[2] + k alpha[1]  - 2 w alpha[2]/ + 5

/        2
\-4 A K k  alpha[2] + 2 k alpha[0] alpha[1]

\
+ 2 k alpha[2] beta[1] - 2 w alpha[1]/ m

2                  2         2           3
+ 80 w k  beta alpha[2] K m  - 40 A k  alpha[2] m

2                4        2                2
+ 44 w k  beta alpha[2] m  + 4 w k  beta alpha[2] K

2                        2
- 2 A k  alpha[1] K + k alpha[0]  + 2 k alpha[1] beta[1]

+ 2 k alpha[2] beta[2] - 2 w alpha[0]

2
+ 16 w k  beta alpha[1] K m

/          2                   2         \  2
+ 6 \8 K beta k  w alpha[2] - 2 A k  alpha[1]/ m

2                3        2
+ 16 w k  beta alpha[1] m  - 4 w k  beta beta[1] m

2                2             \      4   /
+ 2 A k  beta[1] + 4 w k  beta beta[2]/ F(xi)  + \56 k

2  5                           4
alpha[2]  m  + 70 k alpha[1] alpha[2] m

3 /                                  2               \
+ 20 m  \2 k alpha[0] alpha[2] + k alpha[1]  - 2 w alpha[2]/ + 10

/        2
\-4 A K k  alpha[2] + 2 k alpha[0] alpha[1]

\  2
+ 2 k alpha[2] beta[1] - 2 w alpha[1]/ m

2                  3         2           4
+ 80 w k  beta alpha[2] K m  - 20 A k  alpha[2] m

2                5     /   2       2
+ 8 w k  beta alpha[2] m  + 4 \4 K  beta k  w alpha[2]

2                      2
- 2 A K k  alpha[1] + k alpha[0]  + 2 k alpha[1] beta[1]

\
+ 2 k alpha[2] beta[2] - 2 w alpha[0]/ m

2                  2
+ 24 w k  beta alpha[1] K m

/          2                   2         \  3
+ 4 \8 K beta k  w alpha[2] - 2 A k  alpha[1]/ m

2                4
+ 4 w k  beta alpha[1] m  + 2 k alpha[0] beta[1]

2               2
+ 2 k alpha[1] beta[2] - 2 w beta[1] - 4 w k  beta beta[1] m

2                       2
+ 4 w k  beta beta[1] K + 4 A k  beta[1] m

2                       2        \      3   /
- 8 w k  beta beta[2] m + 4 A k  beta[2]/ F(xi)  + \28 k

2  6                           5
alpha[2]  m  + 42 k alpha[1] alpha[2] m

4 /                                  2               \
+ 15 m  \2 k alpha[0] alpha[2] + k alpha[1]  - 2 w alpha[2]/ + 10

/        2
\-4 A K k  alpha[2] + 2 k alpha[0] alpha[1]

\  3
+ 2 k alpha[2] beta[1] - 2 w alpha[1]/ m

2                  4        2           5     /   2
+ 40 w k  beta alpha[2] K m  - 4 A k  alpha[2] m  + 6 \4 K

2                     2                      2
beta k  w alpha[2] - 2 A K k  alpha[1] + k alpha[0]

\
+ 2 k alpha[1] beta[1] + 2 k alpha[2] beta[2] - 2 w alpha[0]/

2         2                  3
m  + 16 w k  beta alpha[1] K m

/          2                   2         \  4
+ \8 K beta k  w alpha[2] - 2 A k  alpha[1]/ m

+ 3 (2 k alpha[0] beta[1] + 2 k alpha[1] beta[2] - 2 w beta[1]

2                         2          2
) m - 8 w k  beta beta[1] K m + 2 A k  beta[1] m

2                                             2
+ 2 A k  beta[1] K + 2 k alpha[0] beta[2] + k beta[1]

2
- 2 w beta[2] + 16 w k  beta beta[2] K

/          2                  2        \  \      2   /
+ \8 K beta k  w beta[1] + 4 A k  beta[2]/ m/ F(xi)  + \8 k

2  7                           6
alpha[2]  m  + 14 k alpha[1] alpha[2] m

5 /                                  2               \
+ 6 m  \2 k alpha[0] alpha[2] + k alpha[1]  - 2 w alpha[2]/ + 5

/        2
\-4 A K k  alpha[2] + 2 k alpha[0] alpha[1]

\  4
+ 2 k alpha[2] beta[1] - 2 w alpha[1]/ m

2                  5     /   2       2
+ 8 w k  beta alpha[2] K m  + 4 \4 K  beta k  w alpha[2]

2                      2
- 2 A K k  alpha[1] + k alpha[0]  + 2 k alpha[1] beta[1]

\  3
+ 2 k alpha[2] beta[2] - 2 w alpha[0]/ m

2                  4
+ 4 w k  beta alpha[1] K m

+ 3 (2 k alpha[0] beta[1] + 2 k alpha[1] beta[2] - 2 w beta[1]

2     /       2                                           2
) m  + 2 \2 A K k  beta[1] + 2 k alpha[0] beta[2] + k beta[1]

\          2                 2
- 2 w beta[2]/ m - 4 w k  beta beta[1] K m

2               2        2
+ 4 w k  beta beta[1] K  - 8 w k  beta beta[2] K m

2                                \
+ 4 A k  beta[2] K + 2 k beta[1] beta[2]/ F(xi)

8         2        7
+ k m  alpha[2]  + 2 k m  alpha[1] alpha[2]

6 /                                  2               \   /
+ m  \2 k alpha[0] alpha[2] + k alpha[1]  - 2 w alpha[2]/ + \
2
-4 A K k  alpha[2] + 2 k alpha[0] alpha[1] + 2 k alpha[2] beta[1]

\  5   /   2       2
- 2 w alpha[1]/ m  + \4 K  beta k  w alpha[2]

2                      2
- 2 A K k  alpha[1] + k alpha[0]  + 2 k alpha[1] beta[1]

\  4
+ 2 k alpha[2] beta[2] - 2 w alpha[0]/ m

+ (2 k alpha[0] beta[1] + 2 k alpha[1] beta[2] - 2 w beta[1])

3   /       2                                           2
m  + \2 A K k  beta[1] + 2 k alpha[0] beta[2] + k beta[1]

\  2   /   2       2                    2
- 2 w beta[2]/ m  + \4 K  beta k  w beta[1] + 4 A K k  beta[2]

\           2               2
+ 2 k beta[1] beta[2]/ m + 12 w k  beta beta[2] K

2\
+ k beta[2] /
solve({k*m^8*alpha[2]^2+2*k*m^7*alpha[1]*alpha[2]+m^6*(2*k*alpha[0]*alpha[2]+k*alpha[1]^2-2*w*alpha[2])+(-4*A*K*k^2*alpha[2]+2*k*alpha[0]*alpha[1]+2*k*alpha[2]*beta[1]-2*w*alpha[1])*m^5+(4*K^2*beta*k^2*w*alpha[2]-2*A*K*k^2*alpha[1]+k*alpha[0]^2+2*k*alpha[1]*beta[1]+2*k*alpha[2]*beta[2]-2*w*alpha[0])*m^4+(2*k*alpha[0]*beta[1]+2*k*alpha[1]*beta[2]-2*w*beta[1])*m^3+(2*A*K*k^2*beta[1]+2*k*alpha[0]*beta[2]+k*beta[1]^2-2*w*beta[2])*m^2+(4*K^2*beta*k^2*w*beta[1]+4*A*K*k^2*beta[2]+2*k*beta[1]*beta[2])*m+12*w*k^2*beta*beta[2]*K^2+k*beta[2]^2 = 0, 56*k*alpha[2]^2*m^3+42*k*alpha[1]*alpha[2]*m^2+6*m*(2*k*alpha[0]*alpha[2]+k*alpha[1]^2-2*w*alpha[2])+96*w*k^2*beta*alpha[2]*m^3+40*w*k^2*beta*alpha[2]*K*m-40*A*k^2*alpha[2]*m^2-4*A*K*k^2*alpha[2]+2*k*alpha[0]*alpha[1]+2*k*alpha[2]*beta[1]-2*w*alpha[1]+4*w*k^2*beta*alpha[1]*K+(4*(8*K*beta*k^2*w*alpha[2]-2*A*k^2*alpha[1]))*m+24*w*k^2*beta*alpha[1]*m^2 = 0, 8*k*alpha[2]^2*m^7+14*k*alpha[1]*alpha[2]*m^6+6*m^5*(2*k*alpha[0]*alpha[2]+k*alpha[1]^2-2*w*alpha[2])+(5*(-4*A*K*k^2*alpha[2]+2*k*alpha[0]*alpha[1]+2*k*alpha[2]*beta[1]-2*w*alpha[1]))*m^4+8*w*k^2*beta*alpha[2]*K*m^5+(4*(4*K^2*beta*k^2*w*alpha[2]-2*A*K*k^2*alpha[1]+k*alpha[0]^2+2*k*alpha[1]*beta[1]+2*k*alpha[2]*beta[2]-2*w*alpha[0]))*m^3+4*w*k^2*beta*alpha[1]*K*m^4+(3*(2*k*alpha[0]*beta[1]+2*k*alpha[1]*beta[2]-2*w*beta[1]))*m^2+(2*(2*A*K*k^2*beta[1]+2*k*alpha[0]*beta[2]+k*beta[1]^2-2*w*beta[2]))*m-4*w*k^2*beta*beta[1]*K*m^2+4*K^2*beta*k^2*w*beta[1]-8*w*k^2*beta*beta[2]*K*m+4*A*K*k^2*beta[2]+2*k*beta[1]*beta[2] = 0, 28*k*alpha[2]^2*m^6+42*k*alpha[1]*alpha[2]*m^5+15*m^4*(2*k*alpha[0]*alpha[2]+k*alpha[1]^2-2*w*alpha[2])+(10*(-4*A*K*k^2*alpha[2]+2*k*alpha[0]*alpha[1]+2*k*alpha[2]*beta[1]-2*w*alpha[1]))*m^3+40*w*k^2*beta*alpha[2]*K*m^4-4*A*k^2*alpha[2]*m^5+(6*(4*K^2*beta*k^2*w*alpha[2]-2*A*K*k^2*alpha[1]+k*alpha[0]^2+2*k*alpha[1]*beta[1]+2*k*alpha[2]*beta[2]-2*w*alpha[0]))*m^2+16*w*k^2*beta*alpha[1]*K*m^3+(8*K*beta*k^2*w*alpha[2]-2*A*k^2*alpha[1])*m^4+(3*(2*k*alpha[0]*beta[1]+2*k*alpha[1]*beta[2]-2*w*beta[1]))*m-8*w*k^2*beta*beta[1]*K*m+2*A*k^2*beta[1]*m^2+2*A*K*k^2*beta[1]+2*k*alpha[0]*beta[2]+k*beta[1]^2-2*w*beta[2]+16*w*k^2*beta*beta[2]*K+(8*K*beta*k^2*w*beta[1]+4*A*k^2*beta[2])*m = 0, 56*k*alpha[2]^2*m^5+70*k*alpha[1]*alpha[2]*m^4+20*m^3*(2*k*alpha[0]*alpha[2]+k*alpha[1]^2-2*w*alpha[2])+(10*(-4*A*K*k^2*alpha[2]+2*k*alpha[0]*alpha[1]+2*k*alpha[2]*beta[1]-2*w*alpha[1]))*m^2+80*w*k^2*beta*alpha[2]*K*m^3-20*A*k^2*alpha[2]*m^4+8*w*k^2*beta*alpha[2]*m^5+(4*(4*K^2*beta*k^2*w*alpha[2]-2*A*K*k^2*alpha[1]+k*alpha[0]^2+2*k*alpha[1]*beta[1]+2*k*alpha[2]*beta[2]-2*w*alpha[0]))*m+24*w*k^2*beta*alpha[1]*K*m^2+(4*(8*K*beta*k^2*w*alpha[2]-2*A*k^2*alpha[1]))*m^3+4*w*k^2*beta*alpha[1]*m^4+2*k*alpha[0]*beta[1]+2*k*alpha[1]*beta[2]-2*w*beta[1]-4*w*k^2*beta*beta[1]*m^2+4*K*beta*k^2*w*beta[1]+4*A*k^2*beta[1]*m-8*w*k^2*beta*beta[2]*m+4*A*k^2*beta[2] = 0, (0*k)*alpha[2]^2*m^4+70*k*alpha[1]*m^3*alpha[2]+15*m^2*(2*k*alpha[0]*alpha[2]+k*alpha[1]^2-2*w*alpha[2])+(5*(-4*A*K*k^2*alpha[2]+2*k*alpha[0]*alpha[1]+2*k*alpha[2]*beta[1]-2*w*alpha[1]))*m+80*w*k^2*beta*alpha[2]*K*m^2-40*A*k^2*alpha[2]*m^3+44*w*k^2*beta*alpha[2]*m^4+4*K^2*beta*k^2*w*alpha[2]-2*A*K*k^2*alpha[1]+k*alpha[0]^2+2*k*alpha[1]*beta[1]+2*k*alpha[2]*beta[2]-2*w*alpha[0]+16*w*k^2*beta*alpha[1]*K*m+(6*(8*K*beta*k^2*w*alpha[2]-2*A*k^2*alpha[1]))*m^2+16*w*k^2*beta*alpha[1]*m^3-4*w*k^2*beta*beta[1]*m+2*A*k^2*beta[1]+4*w*k^2*beta*beta[2] = 0, 12*beta*k^2*w*alpha[2]+k*alpha[2]^2 = 0, 56*beta*k^2*m*w*alpha[2]+4*beta*k^2*w*alpha[1]-4*A*k^2*alpha[2]+8*k*m*alpha[2]^2+2*k*alpha[1]*alpha[2] = 0, 104*beta*k^2*m^2*w*alpha[2]+16*K*beta*k^2*w*alpha[2]+16*beta*k^2*m*w*alpha[1]-20*A*k^2*m*alpha[2]+28*k*m^2*alpha[2]^2-2*A*k^2*alpha[1]+14*k*m*alpha[1]*alpha[2]+2*k*alpha[0]*alpha[2]+k*alpha[1]^2-2*w*alpha[2] = 0}, {k, m, w, alpha[0], alpha[1], alpha[2], beta[1], beta[2]});

## why can not collect(m+f(xi))...

Maple 2018

restart;
T := K+F(xi)*F(xi);
2
K + F(xi)
U := alpha[0]+alpha[1]*(m+F(xi))+beta[1]/(m+F(xi))+alpha[2]*(m+F(xi))*(m+F(xi))+beta[2]/(m+F(xi))^2;
beta[1]
alpha[0] + alpha[1] (m + F(xi)) + ---------
m + F(xi)

2     beta[2]
+ alpha[2] (m + F(xi))  + ------------
2
(m + F(xi))
diff(U, xi);
/ d        \
beta[1] |---- F(xi)|
/ d        \           \ dxi      /
alpha[1] |---- F(xi)| - --------------------
\ dxi      /                  2
(m + F(xi))

/ d        \
2 beta[2] |---- F(xi)|
/ d        \             \ dxi      /
+ 2 alpha[2] (m + F(xi)) |---- F(xi)| - ----------------------
\ dxi      /                   3
(m + F(xi))
d := alpha[1]*T-beta[1]*T/(m+F(xi))^2+2*alpha[2]*(m+F(xi))*T-2*beta[2]*T/(m+F(xi))^3;
/         2\
/         2\   beta[1] \K + F(xi) /
alpha[1] \K + F(xi) / - --------------------
2
(m + F(xi))

/         2\
/         2\   2 beta[2] \K + F(xi) /
+ 2 alpha[2] (m + F(xi)) \K + F(xi) / - ----------------------
3
(m + F(xi))
diff(d, xi);
/ d        \
2 beta[1] F(xi) |---- F(xi)|
/ d        \                   \ dxi      /
2 alpha[1] F(xi) |---- F(xi)| - ----------------------------
\ dxi      /                      2
(m + F(xi))

/         2\ / d        \
2 beta[1] \K + F(xi) / |---- F(xi)|
\ dxi      /
+ -----------------------------------
3
(m + F(xi))

/ d        \ /         2\
+ 2 alpha[2] |---- F(xi)| \K + F(xi) /
\ dxi      /

/ d        \
+ 4 alpha[2] (m + F(xi)) F(xi) |---- F(xi)|
\ dxi      /

/ d        \
4 beta[2] F(xi) |---- F(xi)|
\ dxi      /
- ----------------------------
3
(m + F(xi))

/         2\ / d        \
6 beta[2] \K + F(xi) / |---- F(xi)|
\ dxi      /
+ -----------------------------------
4
(m + F(xi))
collect(%, diff);
/                                               /         2\
|                   2 beta[1] F(xi)   2 beta[1] \K + F(xi) /
|2 alpha[1] F(xi) - --------------- + ----------------------
|                               2                     3
\                    (m + F(xi))           (m + F(xi))

/         2\
+ 2 alpha[2] \K + F(xi) / + 4 alpha[2] (m + F(xi)) F(xi)

/         2\\
4 beta[2] F(xi)   6 beta[2] \K + F(xi) /| / d        \
- --------------- + ----------------------| |---- F(xi)|
3                     4     | \ dxi      /
(m + F(xi))           (m + F(xi))      /
S := (2*alpha[1]*F(xi)-2*beta[1]*F(xi)/(m+F(xi))^2+2*beta[1]*(K+F(xi)^2)/(m+F(xi))^3+2*alpha[2]*(K+F(xi)^2)+4*alpha[2]*(m+F(xi))*F(xi)-4*beta[2]*F(xi)/(m+F(xi))^3+6*beta[2]*(K+F(xi)^2)/(m+F(xi))^4)*T;
/                                               /         2\
|                   2 beta[1] F(xi)   2 beta[1] \K + F(xi) /
|2 alpha[1] F(xi) - --------------- + ----------------------
|                               2                     3
\                    (m + F(xi))           (m + F(xi))

/         2\
+ 2 alpha[2] \K + F(xi) / + 4 alpha[2] (m + F(xi)) F(xi)

/         2\\
4 beta[2] F(xi)   6 beta[2] \K + F(xi) /| /         2\
- --------------- + ----------------------| \K + F(xi) /
3                     4     |
(m + F(xi))           (m + F(xi))      /
expand((2*w*k*k)*beta*S-(2*A*k*k)*d-2*w*U+k*U*U);
2                   2               2
-2 A k  alpha[1] K - 2 A k  alpha[1] F(xi)

2               3
- 4 A k  alpha[2] F(xi)  - 4 w alpha[2] F(xi) m

+ 2 k alpha[0] alpha[1] m + 2 k alpha[0] alpha[1] F(xi)

2 k alpha[0] beta[1]                          2
+ -------------------- + 2 k alpha[0] alpha[2] m
m + F(xi)

2   2 k alpha[0] beta[2]
+ 2 k alpha[0] alpha[2] F(xi)  + --------------------
2
(m + F(xi))

2                         3
+ 2 k alpha[1]  m F(xi) + 2 k alpha[1] m  alpha[2]

3            2 k beta[1] beta[2]
+ 2 k alpha[1] F(xi)  alpha[2] + -------------------
3
(m + F(xi))

2  3                     2  2      2
+ 4 k alpha[2]  m  F(xi) + 6 k alpha[2]  m  F(xi)

2      3                              2
+ 4 k alpha[2]  F(xi)  m - 2 w alpha[0] + k alpha[0]

2                    3        2                2
+ 4 w k  beta alpha[1] F(xi)  + 4 w k  beta alpha[2] K

2
2                    4   2 A k  beta[1] K
+ 12 w k  beta alpha[2] F(xi)  + ----------------
2
(m + F(xi))

2              2
2 A k  beta[1] F(xi)         2
+ --------------------- - 4 A k  alpha[2] m K
2
(m + F(xi))

2                 2        2
- 4 A k  alpha[2] m F(xi)  - 4 A k  alpha[2] F(xi) K

2                  2              2
4 A k  beta[2] K   4 A k  beta[2] F(xi)
+ ---------------- + ---------------------
3                    3
(m + F(xi))          (m + F(xi))

2 k alpha[1] m beta[1]
+ 4 k alpha[0] alpha[2] F(xi) m + ----------------------
m + F(xi)

2
+ 6 k alpha[1] m  alpha[2] F(xi)

2   2 k alpha[1] m beta[2]
+ 6 k alpha[1] m alpha[2] F(xi)  + ----------------------
2
(m + F(xi))

2 k alpha[1] F(xi) beta[1]   2 k alpha[1] F(xi) beta[2]
+ -------------------------- + --------------------------
m + F(xi)                              2
(m + F(xi))

2                             2
2 k beta[1] alpha[2] m    2 k beta[1] alpha[2] F(xi)
+ ----------------------- + ---------------------------
m + F(xi)                   m + F(xi)

2                             2
2 k alpha[2] m  beta[2]   2 k alpha[2] F(xi)  beta[2]
+ ----------------------- + ---------------------------
2                           2
(m + F(xi))                 (m + F(xi))

2
2  2             2      2    k beta[1]
+ k alpha[1]  m  + k alpha[1]  F(xi)  + ------------
2
(m + F(xi))

2
2  4             2      4    k beta[2]
+ k alpha[2]  m  + k alpha[2]  F(xi)  + ------------
4
(m + F(xi))

2 w beta[1]
- 2 w alpha[1] m - 2 w alpha[1] F(xi) - -----------
m + F(xi)

2                     2   2 w beta[2]
- 2 w alpha[2] m  - 2 w alpha[2] F(xi)  - ------------
2
(m + F(xi))

2                             2                     2
4 w k  beta beta[1] F(xi) K   8 w k  beta beta[1] K F(xi)
- --------------------------- + ----------------------------
2                              3
(m + F(xi))                    (m + F(xi))

2
2                           8 w k  beta beta[2] F(xi) K
+ 8 w k  beta alpha[2] F(xi) m K - ---------------------------
3
(m + F(xi))

2                     2
24 w k  beta beta[2] K F(xi)         2
+ ----------------------------- + 4 w k  beta alpha[1] F(xi) K
4
(m + F(xi))

2                   3        2               2
4 w k  beta beta[1] F(xi)    4 w k  beta beta[1] K
- -------------------------- + ----------------------
2                          3
(m + F(xi))                (m + F(xi))

2                   4
4 w k  beta beta[1] F(xi)          2                      2
+ -------------------------- + 16 w k  beta alpha[2] K F(xi)
3
(m + F(xi))

2                   3
2                    3     8 w k  beta beta[2] F(xi)
+ 8 w k  beta alpha[2] F(xi)  m - --------------------------
3
(m + F(xi))

2               2         2                   4
12 w k  beta beta[2] K    12 w k  beta beta[2] F(xi)
+ ----------------------- + ---------------------------
4                           4
(m + F(xi))                 (m + F(xi))

4 k beta[1] alpha[2] F(xi) m   4 k alpha[2] F(xi) m beta[2]
+ ---------------------------- + ----------------------------
m + F(xi)                                2
(m + F(xi))
value(%);
2                   2               2
-2 A k  alpha[1] K - 2 A k  alpha[1] F(xi)

2               3
- 4 A k  alpha[2] F(xi)  - 4 w alpha[2] F(xi) m

+ 2 k alpha[0] alpha[1] m + 2 k alpha[0] alpha[1] F(xi)

2 k alpha[0] beta[1]                          2
+ -------------------- + 2 k alpha[0] alpha[2] m
m + F(xi)

2   2 k alpha[0] beta[2]
+ 2 k alpha[0] alpha[2] F(xi)  + --------------------
2
(m + F(xi))

2                         3
+ 2 k alpha[1]  m F(xi) + 2 k alpha[1] m  alpha[2]

3            2 k beta[1] beta[2]
+ 2 k alpha[1] F(xi)  alpha[2] + -------------------
3
(m + F(xi))

2  3                     2  2      2
+ 4 k alpha[2]  m  F(xi) + 6 k alpha[2]  m  F(xi)

2      3                              2
+ 4 k alpha[2]  F(xi)  m - 2 w alpha[0] + k alpha[0]

2                    3        2                2
+ 4 w k  beta alpha[1] F(xi)  + 4 w k  beta alpha[2] K

2
2                    4   2 A k  beta[1] K
+ 12 w k  beta alpha[2] F(xi)  + ----------------
2
(m + F(xi))

2              2
2 A k  beta[1] F(xi)         2
+ --------------------- - 4 A k  alpha[2] m K
2
(m + F(xi))

2                 2        2
- 4 A k  alpha[2] m F(xi)  - 4 A k  alpha[2] F(xi) K

2                  2              2
4 A k  beta[2] K   4 A k  beta[2] F(xi)
+ ---------------- + ---------------------
3                    3
(m + F(xi))          (m + F(xi))

2 k alpha[1] m beta[1]
+ 4 k alpha[0] alpha[2] F(xi) m + ----------------------
m + F(xi)

2
+ 6 k alpha[1] m  alpha[2] F(xi)

2   2 k alpha[1] m beta[2]
+ 6 k alpha[1] m alpha[2] F(xi)  + ----------------------
2
(m + F(xi))

2 k alpha[1] F(xi) beta[1]   2 k alpha[1] F(xi) beta[2]
+ -------------------------- + --------------------------
m + F(xi)                              2
(m + F(xi))

2                             2
2 k beta[1] alpha[2] m    2 k beta[1] alpha[2] F(xi)
+ ----------------------- + ---------------------------
m + F(xi)                   m + F(xi)

2                             2
2 k alpha[2] m  beta[2]   2 k alpha[2] F(xi)  beta[2]
+ ----------------------- + ---------------------------
2                           2
(m + F(xi))                 (m + F(xi))

2
2  2             2      2    k beta[1]
+ k alpha[1]  m  + k alpha[1]  F(xi)  + ------------
2
(m + F(xi))

2
2  4             2      4    k beta[2]
+ k alpha[2]  m  + k alpha[2]  F(xi)  + ------------
4
(m + F(xi))

2 w beta[1]
- 2 w alpha[1] m - 2 w alpha[1] F(xi) - -----------
m + F(xi)

2                     2   2 w beta[2]
- 2 w alpha[2] m  - 2 w alpha[2] F(xi)  - ------------
2
(m + F(xi))

2                             2                     2
4 w k  beta beta[1] F(xi) K   8 w k  beta beta[1] K F(xi)
- --------------------------- + ----------------------------
2                              3
(m + F(xi))                    (m + F(xi))

2
2                           8 w k  beta beta[2] F(xi) K
+ 8 w k  beta alpha[2] F(xi) m K - ---------------------------
3
(m + F(xi))

2                     2
24 w k  beta beta[2] K F(xi)         2
+ ----------------------------- + 4 w k  beta alpha[1] F(xi) K
4
(m + F(xi))

2                   3        2               2
4 w k  beta beta[1] F(xi)    4 w k  beta beta[1] K
- -------------------------- + ----------------------
2                          3
(m + F(xi))                (m + F(xi))

2                   4
4 w k  beta beta[1] F(xi)          2                      2
+ -------------------------- + 16 w k  beta alpha[2] K F(xi)
3
(m + F(xi))

2                   3
2                    3     8 w k  beta beta[2] F(xi)
+ 8 w k  beta alpha[2] F(xi)  m - --------------------------
3
(m + F(xi))

2               2         2                   4
12 w k  beta beta[2] K    12 w k  beta beta[2] F(xi)
+ ----------------------- + ---------------------------
4                           4
(m + F(xi))                 (m + F(xi))

4 k beta[1] alpha[2] F(xi) m   4 k alpha[2] F(xi) m beta[2]
+ ---------------------------- + ----------------------------
m + F(xi)                                2
(m + F(xi))
simplify(%);
2                   2               2
-2 A k  alpha[1] K - 2 A k  alpha[1] F(xi)

2               3
- 4 A k  alpha[2] F(xi)  - 4 w alpha[2] F(xi) m

+ 2 k alpha[0] alpha[1] m + 2 k alpha[0] alpha[1] F(xi)

2 k alpha[0] beta[1]                          2
+ -------------------- + 2 k alpha[0] alpha[2] m
m + F(xi)

2   2 k alpha[0] beta[2]
+ 2 k alpha[0] alpha[2] F(xi)  + --------------------
2
(m + F(xi))

2                         3
+ 2 k alpha[1]  m F(xi) + 2 k alpha[1] m  alpha[2]

3            2 k beta[1] beta[2]
+ 2 k alpha[1] F(xi)  alpha[2] + -------------------
3
(m + F(xi))

2  3                     2  2      2
+ 4 k alpha[2]  m  F(xi) + 6 k alpha[2]  m  F(xi)

2      3                              2
+ 4 k alpha[2]  F(xi)  m - 2 w alpha[0] + k alpha[0]

2                    3        2                2
+ 4 w k  beta alpha[1] F(xi)  + 4 w k  beta alpha[2] K

2
2                    4   2 A k  beta[1] K
+ 12 w k  beta alpha[2] F(xi)  + ----------------
2
(m + F(xi))

2              2
2 A k  beta[1] F(xi)         2
+ --------------------- - 4 A k  alpha[2] m K
2
(m + F(xi))

2                 2        2
- 4 A k  alpha[2] m F(xi)  - 4 A k  alpha[2] F(xi) K

2                  2              2
4 A k  beta[2] K   4 A k  beta[2] F(xi)
+ ---------------- + ---------------------
3                    3
(m + F(xi))          (m + F(xi))

2 k alpha[1] m beta[1]
+ 4 k alpha[0] alpha[2] F(xi) m + ----------------------
m + F(xi)

2
+ 6 k alpha[1] m  alpha[2] F(xi)

2   2 k alpha[1] m beta[2]
+ 6 k alpha[1] m alpha[2] F(xi)  + ----------------------
2
(m + F(xi))

2 k alpha[1] F(xi) beta[1]   2 k alpha[1] F(xi) beta[2]
+ -------------------------- + --------------------------
m + F(xi)                              2
(m + F(xi))

2                             2
2 k beta[1] alpha[2] m    2 k beta[1] alpha[2] F(xi)
+ ----------------------- + ---------------------------
m + F(xi)                   m + F(xi)

2                             2
2 k alpha[2] m  beta[2]   2 k alpha[2] F(xi)  beta[2]
+ ----------------------- + ---------------------------
2                           2
(m + F(xi))                 (m + F(xi))

2
2  2             2      2    k beta[1]
+ k alpha[1]  m  + k alpha[1]  F(xi)  + ------------
2
(m + F(xi))

2
2  4             2      4    k beta[2]
+ k alpha[2]  m  + k alpha[2]  F(xi)  + ------------
4
(m + F(xi))

2 w beta[1]
- 2 w alpha[1] m - 2 w alpha[1] F(xi) - -----------
m + F(xi)

2                     2   2 w beta[2]
- 2 w alpha[2] m  - 2 w alpha[2] F(xi)  - ------------
2
(m + F(xi))

2                             2                     2
4 w k  beta beta[1] F(xi) K   8 w k  beta beta[1] K F(xi)
- --------------------------- + ----------------------------
2                              3
(m + F(xi))                    (m + F(xi))

2
2                           8 w k  beta beta[2] F(xi) K
+ 8 w k  beta alpha[2] F(xi) m K - ---------------------------
3
(m + F(xi))

2                     2
24 w k  beta beta[2] K F(xi)         2
+ ----------------------------- + 4 w k  beta alpha[1] F(xi) K
4
(m + F(xi))

2                   3        2               2
4 w k  beta beta[1] F(xi)    4 w k  beta beta[1] K
- -------------------------- + ----------------------
2                          3
(m + F(xi))                (m + F(xi))

2                   4
4 w k  beta beta[1] F(xi)          2                      2
+ -------------------------- + 16 w k  beta alpha[2] K F(xi)
3
(m + F(xi))

2                   3
2                    3     8 w k  beta beta[2] F(xi)
+ 8 w k  beta alpha[2] F(xi)  m - --------------------------
3
(m + F(xi))

2               2         2                   4
12 w k  beta beta[2] K    12 w k  beta beta[2] F(xi)
+ ----------------------- + ---------------------------
4                           4
(m + F(xi))                 (m + F(xi))

4 k beta[1] alpha[2] F(xi) m   4 k alpha[2] F(xi) m beta[2]
+ ---------------------------- + ----------------------------
m + F(xi)                                2
(m + F(xi))

collect(%, m+F(xi));
Error, (in collect) cannot collect m+F(xi)

## i cannot draw figure pls help...

Maple 18

restart;
M := -6*alpha*eta^2*mu*(lambda^2*mu+1)/&vartheta;+12*alpha*eta^2*lambda*mu^(3/2)*(sqrt(mu)*cot(A+sqrt(mu)*eta*(-t*(-alpha*eta^2*mu+f)+x))*lambda+1)/(&vartheta;*cot(A+sqrt(mu)*eta*(-t*(-alpha*eta^2*mu+f)+x)))-6*alpha*eta^2*mu*(sqrt(mu)*cot(A+sqrt(mu)*eta*(-t*(-alpha*eta^2*mu+f)+x))*lambda+1)^2/(&vartheta;*cot(A+sqrt(mu)*eta*(-t*(-alpha*eta^2*mu+f)+x))^2)+6*mu*eta^2*alpha*sqrt(sigma*(1+cot(A+sqrt(mu)*eta*(-t*(-alpha*eta^2*mu+f)+x))^2))/(sqrt(sigma)*theta*cot(A+sqrt(mu)*eta*(-t*(-alpha*eta^2*mu+f)+x))^2);
2    /      2       \
6 alpha eta  mu \lambda  mu + 1/
- -------------------------------- +
&vartheta;

1
-------------------------------------------------------------
/      (1/2)     /   /          2       \    \\
&vartheta; cot\A + mu      eta \-t \-alpha eta  mu + f/ + x//

/            2          (3/2) /  (1/2)    /
\12 alpha eta  lambda mu      \mu      cot\A

(1/2)     /   /          2       \    \\           \\
+ mu      eta \-t \-alpha eta  mu + f/ + x// lambda + 1// -

1
--------------------------------------------------------------
2
/      (1/2)     /   /          2       \    \\
&vartheta; cot\A + mu      eta \-t \-alpha eta  mu + f/ + x//

/           2    /  (1/2)    /
\6 alpha eta  mu \mu      cot\A

(1/2)     /   /          2       \    \\           \  \
+ mu      eta \-t \-alpha eta  mu + f/ + x// lambda + 1/^2/ +

/                /      /
|        2       |      |
\6 mu eta  alpha \sigma \1

2\\      \/
/      (1/2)     /   /          2       \    \\ ||      |
+ cot\A + mu      eta \-t \-alpha eta  mu + f/ + x// //^(1/2)/

/
|     (1/2)
\sigma      theta

2\
/      (1/2)     /   /          2       \    \\ |
cot\A + mu      eta \-t \-alpha eta  mu + f/ + x// /
alpha := 2;
2
eta := 3;
3
mu := 1.5;
1.5
lambda := 2;
2
theta := 3;
3
sigma := .5;
0.5
b := .5;
0.5
f := 5;
5
y := 0;
0
plot3d([abs(M)], x = -3 .. 3, t = -3 .. 3);

 1 2 3 4 5 Page 4 of 5
﻿