MaplePrimes Questions

Search Questions:

Latest Questions Latest Questions Feed

<img alt="" src="file:///C:/DOCUME%7E1/raccach/LOCALS%7E1/Temp/moz-screenshot.png" /><img alt="" src="file:///C:/DOCUME%7E1/raccach/LOCALS%7E1/Temp/moz-screenshot-1.png" /><img alt="" src="file:///C:/DOCUME%7E1/raccach/LOCALS%7E1/Temp/moz-screenshot-2.png" /><img alt="" src="file:///C:/DOCUME%7E1/raccach/LOCALS%7E1/Temp/moz-screenshot-3.png" /><br />
<br />
Hello, I was wondering if someone could help me recreate the picture found on http://en.wikipedia.org/wiki/Complex_logarithm Thank you in advance, Herman

Good Evening Everyone,

Would any body be kind to help me with the attached file. My goal is to plot the frequency graph with different sets of variables for a vertical pump on a pile cap to avoid resonace.

Regards,

Moses

Mam do wykonania kilka zadan lecz niestety nie wiem jak się za nie zabrac. Proszę o jakiąkolwiek pomoc. Oto zadania. 1)Ile jest liczb pierwszych mniejszych niz 567! ? 2)W zbiorze liczb naturalnych {1, 2, ..., 123456!} znajdz wszystkie liczby podzielne przez 13 i 15. Wynik zapisz w postaci zbioru. 3)Czy pierwiastki nastepujacego wielomianu w(x) = x^6 + x^4 + x^2 + 1 leza na okregu jednostkowym? 4)Ile jedynek ma liczba 235465656! w systemie dwójkowym? 5)Zdefiniowac funkcje f(x) = x^234321+cos(x)+ln(x) i obliczyc 10-ta pochodnafunkcji f w punkcie 100.

Archive...

March 13 2010 SandorSzabo 597

The question is simple.

How could I find an earlier (not Active) forum topic?

(I use Firefox 3.5 on xp.)

Thanks,    Sandor

 

Hi I have the expressions: I1 := M*[1-a*exp(-i*theta)]/(1-b*cos(theta)) I2 := M*[1-a*i*exp(i*theta)]/(1+b*sin(theta)) I3 := M*[1+a*exp(-i*theta)]/(1+b*cos(theta)) I4 := M*[1+a*i*exp(i*theta)]/(1-b*sin(theta)) x1 := M*[1-a*cos(theta)]/(1-b*cos(theta)) x2 := M*[1+a*sin(theta)]/(1+b*sin(theta)) x3 := M*[1+a*cos(theta)]/(1+b*cos(theta)) x4 := M*[1-a*sin(theta)]/(1-b*sin(theta)) y1 := M*a*i*sin(theta)/(1-b*cos(theta)) y2 := M*a*i*cos(theta)/(1+b*sin(theta)) y3 := -M*a*i*sin(theta)/(1+b*cos(theta)) y4 := -M*a*i*cos(theta)/(1-b*sin(theta)) I enter the following expression

Please Ignore the previous posting, I had a few mistakes.

I have the following terms: >

a := .178131; 0.178131 >

b := -0.6814e-1*`if`(t = 0, 6, `if`(t = 1, 10, `if`(t = 2, 15, `if`(t = 3, 20, NULL))));

 c := 0.16242e-1*`if`(t = 0, 6, `if`(t = 1, 10, `if`(t = 2, 15, `if`(t = 3, 20, NULL))))^1.5;

The ODE is:

I have the following terms: >

a := .178131; 0.178131 >

e := -0.6814e-1*`if`(t = 0, 6, `if`(t = 1, 10, `if`(t = 2, 15, `if`(t = 3, 20, NULL))));

 f := 0.16242e-1*`if`(t = 0, 6, `if`(t = 1, 10, `if`(t = 2, 15, `if`(t = 3, 20, NULL))))^1.5;

The ODE is:

Q1: Write a procedure named MULTIPLYMATRIX to find the product of an n x m matrix by an
m x q matrix. Your procedure should print the result matrix. The dimensions n, m, q should be
input parameters in your procedure. Test your procedure by demonstrating multiplication of a 2 x
3 with a 3 x 4 matrix of your choice

 

I have been struggling to solve this problem.

I want to minimize this function for w, x and y:

((w^2)/2)+((a/3)*x^3)+(2by)+((2a/3)*y^3)

Subject to w+x+2y=1

Where a and b are positive constants

And also, I want to minimize this function for w, x, y and z:

((3w^2)/2)+((2a/3)*x^3)+(by)+(ay^3)+(bz)+((a/2)*z^3)

where a and b are positive constants.

I've tried a ton of stuff on maple and have been unable to figure it out.  Any help is greatly appreciated!

I have a multivariable function, F(n, g(1,0),g(0,1),g(0,2),g(1,1),g(2,1),...,g(n,1),g(n-1,2),...,g(1,n)), of indeterminates g(i,j) (omitting g(0,0) - in other words - let L = set of all pairs of nonnegative integers, (i,j), which satsify 1<= i+j <=n) of the following form F = product over all the (i,j) in L of g(i,j)^h(i,j) / ((i!

Hi

Does anyone know how to shade the tails (eg the lower and upper 5%) of a probability density function?

thanks!

Eq1 := 55200.0*(1+(3.20000000*10^7*a+1.200000*10^5*b+400*c+d)^2)^.5*(2.048000000*10^15*a+7.680000000*10^12*b+2.560000000*10^10*c+6.40000000*10^7*d)/((3.20000000*10^7*a+1.200000*10^5*b+400*c+d)*(4.800000*10^5*a+1200*b+2*c))-1.177600000*10^12*(1+(3.20000000*10^7*a+1.200000*10^5*b+400*c+d)^2)^1.5/((3.20000000*10^7*a+1.200000*10^5*b+400*c+d)^2*(4.800000*10^5*a+1200*b+2*c))-1.766400000*10^10*(1+(3.20000000*10^7*a+1.200000*10^5*b+400*c+d)^2)^1.5/((3.20000000*10^7*a+1.200000*10^5*b+400*c+d)*(4.800000*10^5*a+1200*b+2*c)^2) = 0

 

EQ1 := 55200.0*(1+(3.20000000*10^7*a+1.200000*10^5*b+400*c+d)^2)^.5*(2.048000000*10^15*a+7.680000000*10^12*b+2.560000000*10^10*c+6.40000000*10^7*d)/((3.20000000*10^7*a+1.200000*10^5*b+400*c+d)*(4.800000*10^5*a+1200*b+2*c))-1.177600000*10^12*(1+(3.20000000*10^7*a+1.200000*10^5*b+400*c+d)^2)^1.5/((3.20000000*10^7*a+1.200000*10^5*b+400*c+d)^2*(4.800000*10^5*a+1200*b+2*c))-1.766400000*10^10*(1+(3.20000000*10^7*a+1.200000*10^5*b+400*c+d)^2)^1.5/((3.20000000*10^7*a+1.200000*10^5*b+400*c+d)*(4.800000*10^5*a+1200*b+2*c)^2) = 0;

First 766 767 768 769 770 771 772 Last Page 768 of 1174