MaplePrimes Questions

Search Questions:

Latest Questions Latest Questions Feed

I read in the net that the method used in pdsolve numeric is the theta method, my question: is it the most efficient with regard to rate of convergence of the numerical solution of the PDE?

If not then why is it used as the default method?

 

Thanks.

 

nullspace or reducedform or Eigenvectors still can not find eigenvector in terms of  mmm , how to find this?

 

mmm is a variable

 in eigenvector using nullspace and eigenvector using maple function  Eigenvectors ? 

I'm reading a string from a textbox, and I need to know where the line breaks are. Hint:They are not found by searching for \n.

I am trying to reduce a nonlinear PDE with the indendent variables $(x,y,t)$ and the dependent variable $\psi(x,y,t)$. $a,b,c$ and $r$ are constants.

I want to use the following substitution:
zeta=(-ax+by)/b, gamma=(bt-x)/b, lambda(zeta,gamma)=exp(-c*exp(rt))u(x,y,t)

This is what I have tried so far:

My first approach using convert function:

restart:
with(PDETools):
declare(psi(x,y,t),lambda(zeta,gamma));
tr:={(-ax+by)/b=zeta,(bt-x)/b=gamma};
eq1:=psi->PDE-equation;
eq2:=eq1(e^{ce^{rt}}*lambda((-ax+by)/b,(bt-x)/b);
eq3:=convert(algsubs(tr,eq2),diff);

This gives me an error: "Error, invalid input: algsubs expects its 1st argument, p, to be of type algebraic = algebaric, but received{(t*u[infintity]-x)/u[infinity]=gamma,....}"

Another approach using dchange:

restart:
with(PDETools):
declare(psi(x,y,t),lambda(zeta,gamma));
eq1:=0=PDE-equation;
tr1:={zeta=(-ax+by)/b,gamma=(bt-x)/b,lambda(zeta,gamma)=-e^{ce^{rt}}*psi(x,y,t)};
tr2:=sove(tr1,{x,y,t,psi(x,y,t)});
eq2:=dchange(tr2,eq1,[zeta,gamma,lambda(zeta,gamma)]);

Here I get the error: "Error, (in dchange/info) found {t} in both lhs and rhs of ´1st. set´ of transformation equations.

Dear All, 

I am using the comand " export as" form the file menu to obatain a latex version of my worksheet. The generated latex file use a package called amplestd2e.sty that should be loaded for latex compiler to function proper. Do somebody know where to find it. Thank you. N. Jand 

Hi everybody!

I am trying to find explicitely the relations between the columns of a matrix

of non-maximal rank. For example, if I have the matrix

M := Matrix([<1,2,3>, <2,4,6>, <5,6,7>]);

I would like that Maple finds that the second column is twice the first one: v_2 = 2*v_1.

How can I do?

How to reverse the order in a list?

example:

i have m := [1, 1, 0, 0, 1, 1, 1, 0]

I want to get the output like newm:=[0,1,1,1,0,0,1,1].

How to solve? Any command can help?

if m:= [01100101, 01101100, 01100111, 01100001];

I want to get [[0,1,1,0,0,1,0,1].[0,1,1,0,1,1,0,0],[0,1,1,0,0,1,1,1],[0,1,1,0,0,0,0,1]];

Any command can solve? Thank you.

hi.please see attached file below and help me.one problem is apply differential operator on matrix and then caclute 3D integral?

maple2.mw

restart; x = zz/L; y = (2*r-b)/a; z = alpha/Pi-1; L := .1; a := 0.1e-1; b := .11; E; 207*10^9; upsilon := .3

NN1 := -((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1); NN2 := ((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1); NN3 := -((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1); NN4 := ((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1); NN5 := ((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1); NN6 := -((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1); NN7 := ((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1); NN8 := -((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1); NN9 := ((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1); NN10 := -((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1); NN11 := ((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1); NN12 := -((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1); NN13 := -((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1); NN14 := ((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1); NN15 := -((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1); NN16 := ((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)

((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)

(1)

``

 

N := Matrix([[NN1, 0, 0, NN2, 0, 0, NN3, 0, 0, NN4, 0, 0, NN5, 0, 0, NN6, 0, 0, NN7, 0, 0, NN8, 0, 0, NN9, 0, 0, NN10, 0, 0, NN11, 0, 0, NN12, 0, 0, NN13, 0, 0, NN14, 0, 0, NN15, 0, 0, NN16, 0, 0], [0, NN1, 0, 0, NN2, 0, 0, NN3, 0, 0, NN4, 0, 0, NN5, 0, 0, NN6, 0, 0, NN7, 0, 0, NN8, 0, 0, NN9, 0, 0, NN10, 0, 0, NN11, 0, 0, NN12, 0, 0, NN13, 0, 0, NN14, 0, 0, NN15, 0, 0, NN16, 0], [0, 0, NN1, 0, 0, NN2, 0, 0, NN3, 0, 0, NN4, 0, 0, NN5, 0, 0, NN6, 0, 0, NN7, 0, 0, NN8, 0, 0, NN9, 0, 0, NN10, 0, 0, NN11, 0, 0, NN12, 0, 0, NN13, 0, 0, NN14, 0, 0, NN15, 0, 0, NN16]])

RTABLE(18446744074182475774, anything, Matrix, rectangular, Fortran_order, [], 2, 1 .. 3, 1 .. 48)

(2)

"Q:=Matrix([[(2/(a))*(&PartialD;)/(&PartialD; y) , 0,0],[2/(a*y+b),2/(a*y+b)*1/(Pi)(&PartialD;)/(&PartialD;z ) ,0],[0,0,1/(L)*(&PartialD;)/(&PartialD; x)],[2/(a*y+b)*1/(Pi)(&PartialD;)/(&PartialD;z ),2/(a)(&PartialD;)/(&PartialD;y)-2/(a*y+b),0],[1/(L)*(&PartialD;)/(&PartialD; x),0,(2/(a))*(&PartialD;)/(&PartialD; y)],[0,1/(L)*(&PartialD;)/(&PartialD; x),2/(a*y+b)*1/(Pi)(&PartialD;)/(&PartialD;z )]])"

Error, invalid derivative

"Q:=Matrix([[(2/a)*(&PartialD;)/(&PartialD;y) , 0,0],[2/(a*y+b),2/(a*y+b)*1/Pi(&PartialD;)/(&PartialD;z ) ,0],[0,0,1/L*(&PartialD;)/(&PartialD; x)],[2/(a*y+b)*1/Pi(&PartialD;)/(&PartialD;z ),2/a(&PartialD;)/(&PartialD;y)-2/(a*y+b),0],[1/L*(&PartialD;)/(&PartialD; x),0,(2/a)*(&PartialD;)/(&PartialD; y)],[0,1/L*(&PartialD;)/(&PartialD; x),2/(a*y+b)*1/Pi(&PartialD;)/(&PartialD;z )]])"

 

NULL

Q := Matrix([[2*Y/a, 0, 0], [2/(a*y+b), 2*Z/((a*y+b)*Pi), 0], [0, 0, X/L], [2*Z/((a*y+b)*Pi), 2*Y/a-2/(a*y+b), 0], [X/L, 0, 2*Y/a], [0, X/L, 2*Z/((a*y+b)*Pi)]])

Matrix([[0.2e3*Y, 0, 0], [2/(0.1e-1*y+.11), 2*Z/((0.1e-1*y+.11)*Pi), 0], [0, 0, 0.1e2*X], [2*Z/((0.1e-1*y+.11)*Pi), 0.2e3*Y-2/(0.1e-1*y+.11), 0], [0.1e2*X, 0, 0.2e3*Y], [0, 0.1e2*X, 2*Z/((0.1e-1*y+.11)*Pi)]])

(3)

````

"Y :=(&PartialD;)/(&PartialD; y):X:=(&PartialD;)/(&PartialD; x):Z:=(&PartialD;)/(&PartialD; z):"

Error, Got internal error in Typesetting:-Parse : "invalid subscript selector"

"Y :=(&PartialD;)/(&PartialD; y):X:=(&PartialD;)/(&PartialD; x):Z:=(&PartialD;)/(&PartialD; z):"

 

0

(4)

````

B := Q.N

RTABLE(18446744074182476230, anything, Matrix, rectangular, Fortran_order, [], 2, 1 .. 6, 1 .. 48)

(5)

NULL

Vector(4, {(1) = ` 6 x 48 `*Matrix, (2) = `Data Type: `*anything, (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order})

(6)

d := (1-upsilon)/(1-2*upsilon); e := upsilon/(1-2*upsilon); DD := E*Matrix([[d, e, e, 0, 0, 0], [e, d, e, 0, 0, 0], [e, e, d, 0, 0, 0], [0, 0, 0, 1/2, 0, 0], [0, 0, 0, 0, 1/2, 0], [0, 0, 0, 0, 0, 1/2]])/(1+upsilon)

Matrix([[1.346153846*E, .5769230769*E, .5769230769*E, 0, 0, 0], [.5769230769*E, 1.346153846*E, .5769230769*E, 0, 0, 0], [.5769230769*E, .5769230769*E, 1.346153846*E, 0, 0, 0], [0, 0, 0, .3846153846*E, 0, 0], [0, 0, 0, 0, .3846153846*E, 0], [0, 0, 0, 0, 0, .3846153846*E]])

(7)

T := Transpose(B).DD.B

Transpose(Matrix(6, 48, {(1, 1) = -0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (1, 2) = 0., (1, 3) = 0., (1, 4) = 0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (1, 5) = 0., (1, 6) = 0., (1, 7) = -0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (1, 8) = 0., (1, 9) = 0., (1, 10) = 0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (1, 11) = 0., (1, 12) = 0., (1, 13) = 0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (1, 14) = 0., (1, 15) = 0., (1, 16) = -0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (1, 17) = 0., (1, 18) = 0., (1, 19) = 0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (1, 20) = 0., (1, 21) = 0., (1, 22) = -0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (1, 23) = 0., (1, 24) = 0., (1, 25) = 0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (1, 26) = 0., (1, 27) = 0., (1, 28) = -0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (1, 29) = 0., (1, 30) = 0., (1, 31) = 0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (1, 32) = 0., (1, 33) = 0., (1, 34) = -0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (1, 35) = 0., (1, 36) = 0., (1, 37) = -0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (1, 38) = 0., (1, 39) = 0., (1, 40) = 0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (1, 41) = 0., (1, 42) = 0., (1, 43) = -0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (1, 44) = 0., (1, 45) = 0., (1, 46) = 0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (1, 47) = 0., (1, 48) = 0., (2, 1) = -2*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 2) = -2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 3) = 0, (2, 4) = 2*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 5) = 2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 6) = 0, (2, 7) = -2*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 8) = -2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 9) = 0, (2, 10) = 2*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 11) = 2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 12) = 0, (2, 13) = 2*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 14) = 2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 15) = 0, (2, 16) = -2*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 17) = -2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 18) = 0, (2, 19) = 2*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 20) = 2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 21) = 0, (2, 22) = -2*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 23) = -2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 24) = 0, (2, 25) = 2*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 26) = 2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 27) = 0, (2, 28) = -2*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 29) = -2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 30) = 0, (2, 31) = 2*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 32) = 2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 33) = 0, (2, 34) = -2*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 35) = -2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 36) = 0, (2, 37) = -2*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 38) = -2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 39) = 0, (2, 40) = 2*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 41) = 2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 42) = 0, (2, 43) = -2*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 44) = -2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 45) = 0, (2, 46) = 2*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 47) = 2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 48) = 0, (3, 1) = 0., (3, 2) = 0., (3, 3) = -0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (3, 4) = 0., (3, 5) = 0., (3, 6) = 0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (3, 7) = 0., (3, 8) = 0., (3, 9) = -0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (3, 10) = 0., (3, 11) = 0., (3, 12) = 0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (3, 13) = 0., (3, 14) = 0., (3, 15) = 0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (3, 16) = 0., (3, 17) = 0., (3, 18) = -0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (3, 19) = 0., (3, 20) = 0., (3, 21) = 0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (3, 22) = 0., (3, 23) = 0., (3, 24) = -0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (3, 25) = 0., (3, 26) = 0., (3, 27) = 0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (3, 28) = 0., (3, 29) = 0., (3, 30) = -0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (3, 31) = 0., (3, 32) = 0., (3, 33) = 0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (3, 34) = 0., (3, 35) = 0., (3, 36) = -0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (3, 37) = 0., (3, 38) = 0., (3, 39) = -0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (3, 40) = 0., (3, 41) = 0., (3, 42) = 0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (3, 43) = 0., (3, 44) = 0., (3, 45) = -0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (3, 46) = 0., (3, 47) = 0., (3, 48) = 0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (4, 1) = -2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 2) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (4, 3) = 0., (4, 4) = 2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 5) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (4, 6) = 0., (4, 7) = -2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 8) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (4, 9) = 0., (4, 10) = 2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 11) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (4, 12) = 0., (4, 13) = 2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 14) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (4, 15) = 0., (4, 16) = -2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 17) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (4, 18) = 0., (4, 19) = 2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 20) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (4, 21) = 0., (4, 22) = -2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 23) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (4, 24) = 0., (4, 25) = 2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 26) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (4, 27) = 0., (4, 28) = -2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 29) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (4, 30) = 0., (4, 31) = 2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 32) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (4, 33) = 0., (4, 34) = -2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 35) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (4, 36) = 0., (4, 37) = -2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 38) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (4, 39) = 0., (4, 40) = 2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 41) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (4, 42) = 0., (4, 43) = -2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 44) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (4, 45) = 0., (4, 46) = 2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 47) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (4, 48) = 0., (5, 1) = -0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 2) = 0., (5, 3) = -0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 4) = 0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 5) = 0., (5, 6) = 0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 7) = -0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 8) = 0., (5, 9) = -0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 10) = 0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 11) = 0., (5, 12) = 0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 13) = 0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 14) = 0., (5, 15) = 0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 16) = -0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 17) = 0., (5, 18) = -0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 19) = 0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 20) = 0., (5, 21) = 0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 22) = -0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 23) = 0., (5, 24) = -0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 25) = 0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 26) = 0., (5, 27) = 0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 28) = -0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 29) = 0., (5, 30) = -0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 31) = 0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 32) = 0., (5, 33) = 0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 34) = -0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (5, 35) = 0., (5, 36) = -0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (5, 37) = -0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 38) = 0., (5, 39) = -0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 40) = 0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 41) = 0., (5, 42) = 0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 43) = -0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 44) = 0., (5, 45) = -0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 46) = 0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (5, 47) = 0., (5, 48) = 0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (6, 1) = 0., (6, 2) = -0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (6, 3) = -2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 4) = 0., (6, 5) = 0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (6, 6) = 2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 7) = 0., (6, 8) = -0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (6, 9) = -2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 10) = 0., (6, 11) = 0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (6, 12) = 2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 13) = 0., (6, 14) = 0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (6, 15) = 2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 16) = 0., (6, 17) = -0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (6, 18) = -2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 19) = 0., (6, 20) = 0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (6, 21) = 2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 22) = 0., (6, 23) = -0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (6, 24) = -2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 25) = 0., (6, 26) = 0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (6, 27) = 2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 28) = 0., (6, 29) = -0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (6, 30) = -2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 31) = 0., (6, 32) = 0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (6, 33) = 2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 34) = 0., (6, 35) = -0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (6, 36) = -2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 37) = 0., (6, 38) = -0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (6, 39) = -2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 40) = 0., (6, 41) = 0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (6, 42) = 2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 43) = 0., (6, 44) = -0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (6, 45) = -2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 46) = 0., (6, 47) = 0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (6, 48) = 2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi)})).(Matrix(6, 48, {(1, 1) = -269.2307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)-1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 2) = -.3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 3) = -5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (1, 4) = 269.2307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)+1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 5) = .3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 6) = 5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (1, 7) = -269.2307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)-1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 8) = -.3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 9) = -5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (1, 10) = 269.2307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)+1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 11) = .3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 12) = 5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (1, 13) = 269.2307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)+1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 14) = .3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 15) = 5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (1, 16) = -269.2307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)-1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 17) = -.3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 18) = -5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (1, 19) = 269.2307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)+1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 20) = .3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 21) = 5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (1, 22) = -269.2307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)-1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 23) = -.3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 24) = -5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (1, 25) = 269.2307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)+1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 26) = .3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 27) = 5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (1, 28) = -269.2307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)-1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 29) = -.3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 30) = -5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (1, 31) = 269.2307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)+1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 32) = .3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 33) = 5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (1, 34) = -269.2307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)-1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 35) = -.3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 36) = -5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (1, 37) = -269.2307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)-1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 38) = -.3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 39) = -5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (1, 40) = 269.2307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)+1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 41) = .3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 42) = 5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (1, 43) = -269.2307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)-1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 44) = -.3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 45) = -5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (1, 46) = 269.2307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)+1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 47) = .3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 48) = 5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (2, 1) = -115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)-2.692307692*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 2) = -.8569881549*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 3) = -5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (2, 4) = 115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)+2.692307692*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 5) = .8569881549*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 6) = 5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (2, 7) = -115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)-2.692307692*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 8) = -.8569881549*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 9) = -5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (2, 10) = 115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)+2.692307692*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 11) = .8569881549*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 12) = 5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (2, 13) = 115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)+2.692307692*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 14) = .8569881549*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 15) = 5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (2, 16) = -115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)-2.692307692*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 17) = -.8569881549*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 18) = -5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (2, 19) = 115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)+2.692307692*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 20) = .8569881549*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 21) = 5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (2, 22) = -115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)-2.692307692*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 23) = -.8569881549*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 24) = -5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (2, 25) = 115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)+2.692307692*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 26) = .8569881549*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 27) = 5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (2, 28) = -115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)-2.692307692*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 29) = -.8569881549*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 30) = -5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (2, 31) = 115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)+2.692307692*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 32) = .8569881549*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 33) = 5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (2, 34) = -115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)-2.692307692*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 35) = -.8569881549*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 36) = -5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (2, 37) = -115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)-2.692307692*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 38) = -.8569881549*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 39) = -5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (2, 40) = 115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)+2.692307692*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 41) = .8569881549*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 42) = 5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (2, 43) = -115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)-2.692307692*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 44) = -.8569881549*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 45) = -5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (2, 46) = 115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)+2.692307692*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 47) = .8569881549*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 48) = 5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (3, 1) = -115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)-1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 2) = -.3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 3) = -13.46153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (3, 4) = 115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)+1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 5) = .3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 6) = 13.46153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (3, 7) = -115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)-1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 8) = -.3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 9) = -13.46153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (3, 10) = 115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)+1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 11) = .3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 12) = 13.46153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (3, 13) = 115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)+1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 14) = .3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 15) = 13.46153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (3, 16) = -115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)-1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 17) = -.3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 18) = -13.46153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (3, 19) = 115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)+1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 20) = .3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 21) = 13.46153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (3, 22) = -115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)-1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 23) = -.3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 24) = -13.46153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (3, 25) = 115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)+1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 26) = .3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 27) = 13.46153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (3, 28) = -115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)-1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 29) = -.3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 30) = -13.46153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (3, 31) = 115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)+1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 32) = .3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 33) = 13.46153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (3, 34) = -115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)-1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 35) = -.3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 36) = -13.46153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (3, 37) = -115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)-1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 38) = -.3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 39) = -13.46153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (3, 40) = 115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)+1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 41) = .3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 42) = 13.46153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (3, 43) = -115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)-1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 44) = -.3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 45) = -13.46153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (3, 46) = 115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)+1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 47) = .3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 48) = 13.46153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (4, 1) = -.2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (4, 2) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (4, 3) = 0., (4, 4) = .2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (4, 5) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (4, 6) = 0., (4, 7) = -.2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (4, 8) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (4, 9) = 0., (4, 10) = .2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (4, 11) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (4, 12) = 0., (4, 13) = .2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (4, 14) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (4, 15) = 0., (4, 16) = -.2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (4, 17) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (4, 18) = 0., (4, 19) = .2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (4, 20) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (4, 21) = 0., (4, 22) = -.2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (4, 23) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (4, 24) = 0., (4, 25) = .2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (4, 26) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (4, 27) = 0., (4, 28) = -.2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (4, 29) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (4, 30) = 0., (4, 31) = .2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (4, 32) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (4, 33) = 0., (4, 34) = -.2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (4, 35) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (4, 36) = 0., (4, 37) = -.2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (4, 38) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (4, 39) = 0., (4, 40) = .2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (4, 41) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (4, 42) = 0., (4, 43) = -.2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (4, 44) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (4, 45) = 0., (4, 46) = .2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (4, 47) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (4, 48) = 0., (5, 1) = -3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 2) = 0., (5, 3) = -76.92307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 4) = 3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 5) = 0., (5, 6) = 76.92307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 7) = -3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 8) = 0., (5, 9) = -76.92307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 10) = 3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 11) = 0., (5, 12) = 76.92307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 13) = 3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 14) = 0., (5, 15) = 76.92307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 16) = -3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 17) = 0., (5, 18) = -76.92307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 19) = 3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 20) = 0., (5, 21) = 76.92307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 22) = -3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 23) = 0., (5, 24) = -76.92307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 25) = 3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 26) = 0., (5, 27) = 76.92307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 28) = -3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 29) = 0., (5, 30) = -76.92307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 31) = 3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 32) = 0., (5, 33) = 76.92307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 34) = -3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (5, 35) = 0., (5, 36) = -76.92307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (5, 37) = -3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 38) = 0., (5, 39) = -76.92307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 40) = 3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 41) = 0., (5, 42) = 76.92307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 43) = -3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 44) = 0., (5, 45) = -76.92307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 46) = 3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (5, 47) = 0., (5, 48) = 76.92307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (6, 1) = 0., (6, 2) = -3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (6, 3) = -.2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (6, 4) = 0., (6, 5) = 3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (6, 6) = .2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (6, 7) = 0., (6, 8) = -3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (6, 9) = -.2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (6, 10) = 0., (6, 11) = 3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (6, 12) = .2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (6, 13) = 0., (6, 14) = 3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (6, 15) = .2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (6, 16) = 0., (6, 17) = -3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (6, 18) = -.2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (6, 19) = 0., (6, 20) = 3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (6, 21) = .2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (6, 22) = 0., (6, 23) = -3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (6, 24) = -.2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (6, 25) = 0., (6, 26) = 3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (6, 27) = .2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (6, 28) = 0., (6, 29) = -3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (6, 30) = -.2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (6, 31) = 0., (6, 32) = 3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (6, 33) = .2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (6, 34) = 0., (6, 35) = -3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (6, 36) = -.2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (6, 37) = 0., (6, 38) = -3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (6, 39) = -.2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (6, 40) = 0., (6, 41) = 3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (6, 42) = .2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (6, 43) = 0., (6, 44) = -3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (6, 45) = -.2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (6, 46) = 0., (6, 47) = 3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (6, 48) = .2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11)}))

(8)

S := (1/4)*a*Pi*L*(a*y+b)*T

Typesetting[delayDotProduct](0.7853981635e-3*(0.1e-1*y+.11), Transpose(Matrix(6, 48, {(1, 1) = -0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (1, 2) = 0., (1, 3) = 0., (1, 4) = 0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (1, 5) = 0., (1, 6) = 0., (1, 7) = -0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (1, 8) = 0., (1, 9) = 0., (1, 10) = 0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (1, 11) = 0., (1, 12) = 0., (1, 13) = 0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (1, 14) = 0., (1, 15) = 0., (1, 16) = -0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (1, 17) = 0., (1, 18) = 0., (1, 19) = 0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (1, 20) = 0., (1, 21) = 0., (1, 22) = -0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (1, 23) = 0., (1, 24) = 0., (1, 25) = 0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (1, 26) = 0., (1, 27) = 0., (1, 28) = -0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (1, 29) = 0., (1, 30) = 0., (1, 31) = 0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (1, 32) = 0., (1, 33) = 0., (1, 34) = -0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (1, 35) = 0., (1, 36) = 0., (1, 37) = -0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (1, 38) = 0., (1, 39) = 0., (1, 40) = 0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (1, 41) = 0., (1, 42) = 0., (1, 43) = -0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (1, 44) = 0., (1, 45) = 0., (1, 46) = 0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (1, 47) = 0., (1, 48) = 0., (2, 1) = -2*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 2) = -2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 3) = 0, (2, 4) = 2*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 5) = 2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 6) = 0, (2, 7) = -2*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 8) = -2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 9) = 0, (2, 10) = 2*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 11) = 2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 12) = 0, (2, 13) = 2*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 14) = 2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 15) = 0, (2, 16) = -2*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 17) = -2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 18) = 0, (2, 19) = 2*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 20) = 2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 21) = 0, (2, 22) = -2*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 23) = -2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (2, 24) = 0, (2, 25) = 2*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 26) = 2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 27) = 0, (2, 28) = -2*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 29) = -2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 30) = 0, (2, 31) = 2*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 32) = 2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 33) = 0, (2, 34) = -2*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 35) = -2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 36) = 0, (2, 37) = -2*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 38) = -2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 39) = 0, (2, 40) = 2*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 41) = 2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 42) = 0, (2, 43) = -2*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 44) = -2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 45) = 0, (2, 46) = 2*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 47) = 2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (2, 48) = 0, (3, 1) = 0., (3, 2) = 0., (3, 3) = -0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (3, 4) = 0., (3, 5) = 0., (3, 6) = 0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (3, 7) = 0., (3, 8) = 0., (3, 9) = -0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (3, 10) = 0., (3, 11) = 0., (3, 12) = 0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (3, 13) = 0., (3, 14) = 0., (3, 15) = 0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (3, 16) = 0., (3, 17) = 0., (3, 18) = -0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (3, 19) = 0., (3, 20) = 0., (3, 21) = 0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (3, 22) = 0., (3, 23) = 0., (3, 24) = -0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (3, 25) = 0., (3, 26) = 0., (3, 27) = 0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (3, 28) = 0., (3, 29) = 0., (3, 30) = -0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (3, 31) = 0., (3, 32) = 0., (3, 33) = 0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (3, 34) = 0., (3, 35) = 0., (3, 36) = -0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (3, 37) = 0., (3, 38) = 0., (3, 39) = -0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (3, 40) = 0., (3, 41) = 0., (3, 42) = 0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (3, 43) = 0., (3, 44) = 0., (3, 45) = -0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (3, 46) = 0., (3, 47) = 0., (3, 48) = 0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (4, 1) = -2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 2) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (4, 3) = 0., (4, 4) = 2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 5) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (4, 6) = 0., (4, 7) = -2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 8) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (4, 9) = 0., (4, 10) = 2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 11) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (4, 12) = 0., (4, 13) = 2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 14) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (4, 15) = 0., (4, 16) = -2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 17) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (4, 18) = 0., (4, 19) = 2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 20) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (4, 21) = 0., (4, 22) = -2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (4, 23) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (4, 24) = 0., (4, 25) = 2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 26) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (4, 27) = 0., (4, 28) = -2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 29) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (4, 30) = 0., (4, 31) = 2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 32) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (4, 33) = 0., (4, 34) = -2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 35) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (4, 36) = 0., (4, 37) = -2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 38) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (4, 39) = 0., (4, 40) = 2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 41) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (4, 42) = 0., (4, 43) = -2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 44) = -(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (4, 45) = 0., (4, 46) = 2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (4, 47) = (0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (4, 48) = 0., (5, 1) = -0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 2) = 0., (5, 3) = -0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 4) = 0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 5) = 0., (5, 6) = 0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 7) = -0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 8) = 0., (5, 9) = -0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 10) = 0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 11) = 0., (5, 12) = 0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 13) = 0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 14) = 0., (5, 15) = 0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 16) = -0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 17) = 0., (5, 18) = -0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 19) = 0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 20) = 0., (5, 21) = 0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 22) = -0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 23) = 0., (5, 24) = -0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 25) = 0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 26) = 0., (5, 27) = 0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 28) = -0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 29) = 0., (5, 30) = -0.2e3*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 31) = 0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 32) = 0., (5, 33) = 0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 34) = -0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (5, 35) = 0., (5, 36) = -0.2e3*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (5, 37) = -0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 38) = 0., (5, 39) = -0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 40) = 0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 41) = 0., (5, 42) = 0.2e3*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 43) = -0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 44) = 0., (5, 45) = -0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 46) = 0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (5, 47) = 0., (5, 48) = 0.2e3*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (6, 1) = 0., (6, 2) = -0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (6, 3) = -2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 4) = 0., (6, 5) = 0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (6, 6) = 2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 7) = 0., (6, 8) = -0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (6, 9) = -2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 10) = 0., (6, 11) = 0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (6, 12) = 2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 13) = 0., (6, 14) = 0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (6, 15) = 2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 16) = 0., (6, 17) = -0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (6, 18) = -2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 19) = 0., (6, 20) = 0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (6, 21) = 2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 22) = 0., (6, 23) = -0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (6, 24) = -2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/((0.1e-1*y+.11)*Pi), (6, 25) = 0., (6, 26) = 0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (6, 27) = 2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 28) = 0., (6, 29) = -0.1e2*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (6, 30) = -2*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 31) = 0., (6, 32) = 0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (6, 33) = 2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 34) = 0., (6, 35) = -0.1e2*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (6, 36) = -2*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 37) = 0., (6, 38) = -0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (6, 39) = -2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 40) = 0., (6, 41) = 0.1e2*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (6, 42) = 2*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 43) = 0., (6, 44) = -0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (6, 45) = -2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/((0.1e-1*y+.11)*Pi), (6, 46) = 0., (6, 47) = 0.1e2*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (6, 48) = 2*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/((0.1e-1*y+.11)*Pi)})).(Matrix(6, 48, {(1, 1) = -269.2307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)-1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 2) = -.3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 3) = -5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (1, 4) = 269.2307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)+1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 5) = .3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 6) = 5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (1, 7) = -269.2307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)-1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 8) = -.3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 9) = -5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (1, 10) = 269.2307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)+1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 11) = .3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 12) = 5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (1, 13) = 269.2307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)+1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 14) = .3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 15) = 5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (1, 16) = -269.2307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)-1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 17) = -.3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 18) = -5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (1, 19) = 269.2307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)+1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 20) = .3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (1, 21) = 5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (1, 22) = -269.2307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)-1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 23) = -.3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (1, 24) = -5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (1, 25) = 269.2307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)+1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 26) = .3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 27) = 5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (1, 28) = -269.2307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)-1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 29) = -.3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 30) = -5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (1, 31) = 269.2307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)+1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 32) = .3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 33) = 5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (1, 34) = -269.2307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)-1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 35) = -.3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 36) = -5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (1, 37) = -269.2307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)-1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 38) = -.3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 39) = -5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (1, 40) = 269.2307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)+1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 41) = .3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 42) = 5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (1, 43) = -269.2307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)-1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 44) = -.3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (1, 45) = -5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (1, 46) = 269.2307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)+1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 47) = .3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (1, 48) = 5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (2, 1) = -115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)-2.692307692*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 2) = -.8569881549*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 3) = -5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (2, 4) = 115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)+2.692307692*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 5) = .8569881549*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 6) = 5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (2, 7) = -115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)-2.692307692*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 8) = -.8569881549*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 9) = -5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (2, 10) = 115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)+2.692307692*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 11) = .8569881549*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 12) = 5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (2, 13) = 115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)+2.692307692*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 14) = .8569881549*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 15) = 5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (2, 16) = -115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)-2.692307692*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 17) = -.8569881549*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 18) = -5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (2, 19) = 115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)+2.692307692*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 20) = .8569881549*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (2, 21) = 5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (2, 22) = -115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)-2.692307692*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 23) = -.8569881549*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (2, 24) = -5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (2, 25) = 115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)+2.692307692*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 26) = .8569881549*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 27) = 5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (2, 28) = -115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)-2.692307692*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 29) = -.8569881549*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 30) = -5.769230769*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (2, 31) = 115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)+2.692307692*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 32) = .8569881549*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 33) = 5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (2, 34) = -115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)-2.692307692*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 35) = -.8569881549*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 36) = -5.769230769*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (2, 37) = -115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)-2.692307692*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 38) = -.8569881549*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 39) = -5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (2, 40) = 115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)+2.692307692*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 41) = .8569881549*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 42) = 5.769230769*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (2, 43) = -115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)-2.692307692*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 44) = -.8569881549*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (2, 45) = -5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (2, 46) = 115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)+2.692307692*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 47) = .8569881549*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (2, 48) = 5.769230769*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (3, 1) = -115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)-1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 2) = -.3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 3) = -13.46153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (3, 4) = 115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)+1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 5) = .3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 6) = 13.46153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (3, 7) = -115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)-1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 8) = -.3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 9) = -13.46153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (3, 10) = 115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)+1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 11) = .3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 12) = 13.46153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (3, 13) = 115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)+1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 14) = .3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 15) = 13.46153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (3, 16) = -115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)-1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 17) = -.3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 18) = -13.46153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (3, 19) = 115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)+1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 20) = .3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (3, 21) = 13.46153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (3, 22) = -115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)-1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 23) = -.3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (3, 24) = -13.46153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (3, 25) = 115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)+1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 26) = .3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 27) = 13.46153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (3, 28) = -115.3846154*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)-1.153846154*E*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 29) = -.3672806379*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 30) = -13.46153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (3, 31) = 115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)+1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 32) = .3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 33) = 13.46153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (3, 34) = -115.3846154*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)-1.153846154*E*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 35) = -.3672806379*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 36) = -13.46153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (3, 37) = -115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)-1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 38) = -.3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 39) = -13.46153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (3, 40) = 115.3846154*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)+1.153846154*E*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 41) = .3672806379*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 42) = 13.46153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (3, 43) = -115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)-1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 44) = -.3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (3, 45) = -13.46153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (3, 46) = 115.3846154*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)+1.153846154*E*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 47) = .3672806379*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (3, 48) = 13.46153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (4, 1) = -.2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (4, 2) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (4, 3) = 0., (4, 4) = .2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (4, 5) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (4, 6) = 0., (4, 7) = -.2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (4, 8) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (4, 9) = 0., (4, 10) = .2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (4, 11) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (4, 12) = 0., (4, 13) = .2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (4, 14) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (4, 15) = 0., (4, 16) = -.2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (4, 17) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (4, 18) = 0., (4, 19) = .2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (4, 20) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (4, 21) = 0., (4, 22) = -.2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (4, 23) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (4, 24) = 0., (4, 25) = .2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (4, 26) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (4, 27) = 0., (4, 28) = -.2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (4, 29) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (4, 30) = 0., (4, 31) = .2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (4, 32) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (4, 33) = 0., (4, 34) = -.2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (4, 35) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (4, 36) = 0., (4, 37) = -.2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (4, 38) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (4, 39) = 0., (4, 40) = .2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (4, 41) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (4, 42) = 0., (4, 43) = -.2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (4, 44) = -.3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (4, 45) = 0., (4, 46) = .2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (4, 47) = .3846153846*E*(0.2e3*Y-2/(0.1e-1*y+.11))*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (4, 48) = 0., (5, 1) = -3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 2) = 0., (5, 3) = -76.92307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 4) = 3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 5) = 0., (5, 6) = 76.92307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 7) = -3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 8) = 0., (5, 9) = -76.92307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 10) = 3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 11) = 0., (5, 12) = 76.92307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 13) = 3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 14) = 0., (5, 15) = 76.92307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (5, 16) = -3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 17) = 0., (5, 18) = -76.92307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (5, 19) = 3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 20) = 0., (5, 21) = 76.92307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (5, 22) = -3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 23) = 0., (5, 24) = -76.92307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (5, 25) = 3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 26) = 0., (5, 27) = 76.92307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 28) = -3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 29) = 0., (5, 30) = -76.92307692*E*Y*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 31) = 3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 32) = 0., (5, 33) = 76.92307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 34) = -3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (5, 35) = 0., (5, 36) = -76.92307692*E*Y*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (5, 37) = -3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 38) = 0., (5, 39) = -76.92307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (5, 40) = 3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 41) = 0., (5, 42) = 76.92307692*E*Y*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (5, 43) = -3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 44) = 0., (5, 45) = -76.92307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (5, 46) = 3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (5, 47) = 0., (5, 48) = 76.92307692*E*Y*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (6, 1) = 0., (6, 2) = -3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (6, 3) = -.2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (6, 4) = 0., (6, 5) = 3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (6, 6) = .2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (6, 7) = 0., (6, 8) = -3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (6, 9) = -.2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (6, 10) = 0., (6, 11) = 3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (6, 12) = .2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (6, 13) = 0., (6, 14) = 3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1), (6, 15) = .2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (6, 16) = 0., (6, 17) = -3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1), (6, 18) = -.2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (6, 19) = 0., (6, 20) = 3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1), (6, 21) = .2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y+1)/(0.1e-1*y+.11), (6, 22) = 0., (6, 23) = -3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1), (6, 24) = -.2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y+1)/(0.1e-1*y+.11), (6, 25) = 0., (6, 26) = 3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (6, 27) = .2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (6, 28) = 0., (6, 29) = -3.846153846*E*X*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (6, 30) = -.2448537586*E*Z*((1/8)*cos(pi*z)-(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (6, 31) = 0., (6, 32) = 3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (6, 33) = .2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (6, 34) = 0., (6, 35) = -3.846153846*E*X*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (6, 36) = -.2448537586*E*Z*((1/8)*sin(pi*z)-(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (6, 37) = 0., (6, 38) = -3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1), (6, 39) = -.2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (6, 40) = 0., (6, 41) = 3.846153846*E*X*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1), (6, 42) = .2448537586*E*Z*((1/8)*cos(pi*z)+(1/8)*cos(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11), (6, 43) = 0., (6, 44) = -3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1), (6, 45) = -.2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x+1)*(y-1)/(0.1e-1*y+.11), (6, 46) = 0., (6, 47) = 3.846153846*E*X*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1), (6, 48) = .2448537586*E*Z*((1/8)*sin(pi*z)+(1/8)*sin(pi*z)^2)*(x-1)*(y-1)/(0.1e-1*y+.11)})), true)

(9)

int(int(int(S, z = -1 .. 1), y = -1 .. 1), x = -1 .. 1)

Warning,  computation interrupted

 

NULL

 

Download maple2.mw

Let A and B two real closed intervals.
I define b(x) as B+x for any real x ; more precisely, if B=[B1, B2], b(x) = [B1+x, B2+x]

I want to build a function f(x) such that :

  1. if  A and b(x) do not overlap then f(x) = 0
  2. otherwise f(x) is some expression of the covering length


For example : if A=[0, 2] and B=[-2,-1], then

  1. f(x) = 0 if  -1+x < 0 or -2+x > 2
  2. otherwise f(x) = L   where L is the measure of the intersection of A and b(x)


I coded a few variants using piecewise or Heaviside functions. 
In some sense I have already answered my own question ... but no one is neither elegant nor concise.

I wonder if there exist a Maple function that returns the measure of the intersection of two real intervals (when they overlap) and 0 otherwise ?

 

Hi,

I have been trying to solve the following equation with respect to y, but I have not been successful. In fact, I always get answer RootOf(...). I should mention that all variables and parameters are real non-negative. I have also tested with "assume", but it did not help. Any suggestion would be appreciated. 

with(RealDomain):

eq := -((y-b)*mu-y)*x^beta*alpha+y^beta*varepsilon*(x-a) = 0

-((y-b)*mu-y)*x^beta*alpha+y^beta*varepsilon*(x-a) = 0

(1)

solve(eq, y)

RootOf(-x^beta*alpha*b*mu+x^beta*alpha*mu*_Z-x^beta*alpha*_Z+_Z^beta*varepsilon*a-_Z^beta*varepsilon*x)

(2)

remove_RootOf(%)

-x^beta*alpha*b*mu = 0

(3)

``

``

Download Equation.mw

 

Thanks.

How much MB of data one can compile in single worksheet without fear of crashing?

I asked this question because I have maple worksheet with almost 1000 of lines, initially sheet use to open very quickly but as soon as data started piling up the opening of worksheet slowdown significantly.

Should I worry about such slowdown due to large amount of data in worksheet or should I need to create another worksheet to divide data??

Regards

hi,

i want to compute the determining PDE system satisfied by the infinitesimals, such as the KdV equation.

but i have a problem, if i use the command

DeterminingPDE(PDE1, integrabilityconditions = false, split = false)

i can get the coefficients of independent objects, but u[t] exists. 

i want to replace u[t] by (-u[x]u-u[x,x,x]), then extract the coefficients.

but i can't collect the coefficients. 

 

my code:

with(PDEtools, DeterminingPDE, declare, diff_table, casesplit, InfinitesimalGenerator, Infinitesimals, SymmetryTest, ReducedForm, FromJet, ToJet);

declare(u(x, t));

U := diff_table(u(x, t));

PDE1 := U[]*U[x]+U[t]+U[x, x, x] = 0;

DetSys := DeterminingPDE(PDE1, integrabilityconditions = false, split = false);
detsys := FromJet(DetSys, u(x, t), differentiationnotation = diff);
pd1 := subs(U[t] = -U[]*U[x]-U[x, x, x], detsys); #u[t]->(-u[x]u-u[x,x,x])
pd2 := ToJet(pd1, [u(x, t)]);

how do i collect the coefficients?

help!

1 2 3 4 5 6 7 Last Page 2 of 1301