MaplePrimes Questions

Search Questions:

Latest Questions Latest Questions Feed

I have produded a 3D plot where I have used the graphic's lighting->user GUI to set the light color, direction, and ambient lighting to my liking.

 

I would like to save the lighting parameters so that I can reproduce the identical lighting in other plots.  I see no way of reading off the lighting parameters from the GUI.  I tried to "lprint(myplot)" to see if it contains that information but apparently it doesn't.

So my question is: Is there a way to retrieve the lighting parameters from a 3D plot?

 

--

Rouben Rostamian

I experienced strange operation of "union" for sets of vectors.

Mt1:=Matrix(2, 4, [[ 0,1, 0, 0], [ 0,  0,  1, 1]]); Ms := Vector[column](4, [8,4,2,1]); St1 := {}:

St1:= `union`(St1, {Mt1 . Ms});

I am surprised, because each execution of union adds new and the same vector <4 | 3> to set St1:

1

But after copying any set in the clipboard and pasting the set St1 has only one instance of vector <4 | 3>:

2

What does it mean?

How to solve the system
{sqrt((x-1)^2+(y-5)^2)+(1/2)*abs(x+y) = 3*sqrt(2), sqrt(abs(x+2)) = 2-y}
over the reals symbolically? Of course, with Maple. Mathematica does the job.

Hi everyone,

 

I have a question regarding the use of the applyrule function. I have an expression that contains a polynomial. The expression looks something like:

 

Y := (a0 + a_1*x + a_2*x^2 + ... a_n*x^n)*f(y) + b_0 + b_1*x + b_2*x^2 + ... b_n*x^n)*g(y):

 

I would like to express this as y(x) = P_1*f(y) + P_2*g(y).

 

So far I have tried applyrule([a0 + a_1*x + a_2*x^2 + ... a_n*x^n = P_1, b_0 + b_1*x + b_2*x^2 + ... b_n*x^n) = P_2],Y):

 

This doesn't seem to work. Any suggestions?

 

 

 

 

I want to solve maximize of equation,but the maximize failed to solve it,who can help me.thanks.

c[1] := (1/8)*w*{(1/((x+y+z)^2+1))^(3/2)+(1/((x+y)^2+1))^(3/2)+(1/((x+z)^2+1))^(3/2)+(1/((y+z)^2+1))^(3/2)+(1/(x^2+1))^(3/2)+(1/(y^2+1))^(3/2)+(1/(z^2+1))^(3/2)+1}+(1/8)*{x/((x+y+z)^2+1)+x/((x+y)^2+1)+x/((x+z)^2+1)+x/(x^2+1)}:

c[2] := (1/8)*w*{(1/((x+y+z)^2+1))^(3/2)+(1/((x+y)^2+1))^(3/2)+(1/((x+z)^2+1))^(3/2)+(1/((y+z)^2+1))^(3/2)+(1/(x^2+1))^(3/2)+(1/(y^2+1))^(3/2)+[1/(z^2+1)]^(3/2)+1}+(1/8)*{y/((x+y+z)^2+1)+y/((x+y)^2+1)+y/((y+z)^2+1)+y/(y^2+1)}:

t[1] := diff(c[1], x);

(1/8)*w*{-(3/2)*(1/((x+y+z)^2+1))^(1/2)*(2*x+2*y+2*z)/((x+y+z)^2+1)^2-(3/2)*(1/((x+y)^2+1))^(1/2)*(2*x+2*y)/((x+y)^2+1)^2-(3/2)*(1/((x+z)^2+1))^(1/2)*(2*x+2*z)/((x+z)^2+1)^2-3*(1/(x^2+1))^(1/2)*x/(x^2+1)^2}+(1/8)*{1/((x+y+z)^2+1)-x*(2*x+2*y+2*z)/((x+y+z)^2+1)^2+1/((x+y)^2+1)-x*(2*x+2*y)/((x+y)^2+1)^2+1/((x+z)^2+1)-x*(2*x+2*z)/((x+z)^2+1)^2+1/(x^2+1)-2*x^2/(x^2+1)^2}

(1)

t[2] := diff(c[2], y);

(1/8)*w*{-(3/2)*(1/((x+y+z)^2+1))^(1/2)*(2*x+2*y+2*z)/((x+y+z)^2+1)^2-(3/2)*(1/((x+y)^2+1))^(1/2)*(2*x+2*y)/((x+y)^2+1)^2-(3/2)*(1/((y+z)^2+1))^(1/2)*(2*y+2*z)/((y+z)^2+1)^2-3*(1/(y^2+1))^(1/2)*y/(y^2+1)^2}+(1/8)*{1/((x+y+z)^2+1)-y*(2*x+2*y+2*z)/((x+y+z)^2+1)^2+1/((x+y)^2+1)-y*(2*x+2*y)/((x+y)^2+1)^2+1/((y+z)^2+1)-y*(2*y+2*z)/((y+z)^2+1)^2+1/(y^2+1)-2*y^2/(y^2+1)^2}

(2)

eliminate({t[1], t[2]}, w);

[{w = -{1/((x+y+z)^2+1)-y*(2*x+2*y+2*z)/((x+y+z)^2+1)^2+1/((x+y)^2+1)-y*(2*x+2*y)/((x+y)^2+1)^2+1/((y+z)^2+1)-y*(2*y+2*z)/((y+z)^2+1)^2+1/(y^2+1)-2*y^2/(y^2+1)^2}/{-(3/2)*(1/(x^2+2*x*y+2*x*z+y^2+2*y*z+z^2+1))^(1/2)*(2*x+2*y+2*z)/((x+y+z)^2+1)^2-(3/2)*(1/(x^2+2*x*y+y^2+1))^(1/2)*(2*x+2*y)/((x+y)^2+1)^2-(3/2)*(1/(y^2+2*y*z+z^2+1))^(1/2)*(2*y+2*z)/((y+z)^2+1)^2-3*(1/(y^2+1))^(1/2)*y/(y^2+1)^2}}, {{1/((x+y+z)^2+1)-x*(2*x+2*y+2*z)/((x+y+z)^2+1)^2+1/((x+y)^2+1)-x*(2*x+2*y)/((x+y)^2+1)^2+1/((x+z)^2+1)-x*(2*x+2*z)/((x+z)^2+1)^2+1/(x^2+1)-2*x^2/(x^2+1)^2}*{-(3/2)*(1/(x^2+2*x*y+2*x*z+y^2+2*y*z+z^2+1))^(1/2)*(2*x+2*y+2*z)/((x+y+z)^2+1)^2-(3/2)*(1/(x^2+2*x*y+y^2+1))^(1/2)*(2*x+2*y)/((x+y)^2+1)^2-(3/2)*(1/(y^2+2*y*z+z^2+1))^(1/2)*(2*y+2*z)/((y+z)^2+1)^2-3*(1/(y^2+1))^(1/2)*y/(y^2+1)^2}-{1/((x+y+z)^2+1)-y*(2*x+2*y+2*z)/((x+y+z)^2+1)^2+1/((x+y)^2+1)-y*(2*x+2*y)/((x+y)^2+1)^2+1/((y+z)^2+1)-y*(2*y+2*z)/((y+z)^2+1)^2+1/(y^2+1)-2*y^2/(y^2+1)^2}*{-(3/2)*(1/(x^2+2*x*y+2*x*z+y^2+2*y*z+z^2+1))^(1/2)*(2*x+2*y+2*z)/((x+y+z)^2+1)^2-(3/2)*(1/(x^2+2*x*y+y^2+1))^(1/2)*(2*x+2*y)/((x+y)^2+1)^2-(3/2)*(1/(x^2+2*x*z+z^2+1))^(1/2)*(2*x+2*z)/((x+z)^2+1)^2-3*(1/(x^2+1))^(1/2)*x/(x^2+1)^2}}]

(3)

w = -(1/((x+y+z)^2+1)-y*(2*x+2*y+2*z)/((x+y+z)^2+1)^2+1/((x+y)^2+1)-y*(2*x+2*y)/((x+y)^2+1)^2+1/((y+z)^2+1)-y*(2*y+2*z)/((y+z)^2+1)^2+1/(y^2+1)-2*y^2/(y^2+1)^2)/(-(3/2)*sqrt(1/(x^2+2*x*y+2*x*z+y^2+2*y*z+z^2+1))*(2*x+2*y+2*z)/((x+y+z)^2+1)^2-(3/2)*sqrt(1/(x^2+2*x*y+y^2+1))*(2*x+2*y)/((x+y)^2+1)^2-(3/2)*sqrt(1/(y^2+2*y*z+z^2+1))*(2*y+2*z)/((y+z)^2+1)^2-3*sqrt(1/(y^2+1))*y/(y^2+1)^2);

w = -(1/((x+y+z)^2+1)-y*(2*x+2*y+2*z)/((x+y+z)^2+1)^2+1/((x+y)^2+1)-y*(2*x+2*y)/((x+y)^2+1)^2+1/((y+z)^2+1)-y*(2*y+2*z)/((y+z)^2+1)^2+1/(y^2+1)-2*y^2/(y^2+1)^2)/(-(3/2)*(1/(x^2+2*x*y+2*x*z+y^2+2*y*z+z^2+1))^(1/2)*(2*x+2*y+2*z)/((x+y+z)^2+1)^2-(3/2)*(1/(x^2+2*x*y+y^2+1))^(1/2)*(2*x+2*y)/((x+y)^2+1)^2-(3/2)*(1/(y^2+2*y*z+z^2+1))^(1/2)*(2*y+2*z)/((y+z)^2+1)^2-3*(1/(y^2+1))^(1/2)*y/(y^2+1)^2)

(4)

sub(w = -(1/((x+y+z)^2+1)-y*(2*x+2*y+2*z)/((x+y+z)^2+1)^2+1/((x+y)^2+1)-y*(2*x+2*y)/((x+y)^2+1)^2+1/((y+z)^2+1)-y*(2*y+2*z)/((y+z)^2+1)^2+1/(y^2+1)-2*y^2/(y^2+1)^2)/(-(3/2)*(1/(x^2+2*x*y+2*x*z+y^2+2*y*z+z^2+1))^(1/2)*(2*x+2*y+2*z)/((x+y+z)^2+1)^2-(3/2)*(1/(x^2+2*x*y+y^2+1))^(1/2)*(2*x+2*y)/((x+y)^2+1)^2-(3/2)*(1/(y^2+2*y*z+z^2+1))^(1/2)*(2*y+2*z)/((y+z)^2+1)^2-3*(1/(y^2+1))^(1/2)*y/(y^2+1)^2), c[1]);

sub(w = -(1/((x+y+z)^2+1)-y*(2*x+2*y+2*z)/((x+y+z)^2+1)^2+1/((x+y)^2+1)-y*(2*x+2*y)/((x+y)^2+1)^2+1/((y+z)^2+1)-y*(2*y+2*z)/((y+z)^2+1)^2+1/(y^2+1)-2*y^2/(y^2+1)^2)/(-(3/2)*(1/(x^2+2*x*y+2*x*z+y^2+2*y*z+z^2+1))^(1/2)*(2*x+2*y+2*z)/((x+y+z)^2+1)^2-(3/2)*(1/(x^2+2*x*y+y^2+1))^(1/2)*(2*x+2*y)/((x+y)^2+1)^2-(3/2)*(1/(y^2+2*y*z+z^2+1))^(1/2)*(2*y+2*z)/((y+z)^2+1)^2-3*(1/(y^2+1))^(1/2)*y/(y^2+1)^2), (1/8)*w*{(1/((x+y+z)^2+1))^(3/2)+(1/((x+y)^2+1))^(3/2)+(1/((x+z)^2+1))^(3/2)+(1/((y+z)^2+1))^(3/2)+(1/(x^2+1))^(3/2)+(1/(y^2+1))^(3/2)+(1/(z^2+1))^(3/2)+1}+(1/8)*{x/((x+y+z)^2+1)+x/((x+y)^2+1)+x/((x+z)^2+1)+x/(x^2+1)})

(5)

subs(w = -(1/((x+y+z)^2+1)-y*(2*x+2*y+2*z)/((x+y+z)^2+1)^2+1/((x+y)^2+1)-y*(2*x+2*y)/((x+y)^2+1)^2+1/((y+z)^2+1)-y*(2*y+2*z)/((y+z)^2+1)^2+1/(y^2+1)-2*y^2/(y^2+1)^2)/(-(3/2)*(1/(x^2+2*x*y+2*x*z+y^2+2*y*z+z^2+1))^(1/2)*(2*x+2*y+2*z)/((x+y+z)^2+1)^2-(3/2)*(1/(x^2+2*x*y+y^2+1))^(1/2)*(2*x+2*y)/((x+y)^2+1)^2-(3/2)*(1/(y^2+2*y*z+z^2+1))^(1/2)*(2*y+2*z)/((y+z)^2+1)^2-3*(1/(y^2+1))^(1/2)*y/(y^2+1)^2), c[2]);

-(1/8)*(1/((x+y+z)^2+1)-y*(2*x+2*y+2*z)/((x+y+z)^2+1)^2+1/((x+y)^2+1)-y*(2*x+2*y)/((x+y)^2+1)^2+1/((y+z)^2+1)-y*(2*y+2*z)/((y+z)^2+1)^2+1/(y^2+1)-2*y^2/(y^2+1)^2)*{(1/((x+y+z)^2+1))^(3/2)+(1/((x+y)^2+1))^(3/2)+(1/((x+z)^2+1))^(3/2)+(1/((y+z)^2+1))^(3/2)+(1/(x^2+1))^(3/2)+(1/(y^2+1))^(3/2)+[1/(z^2+1)]^(3/2)+1}/(-(3/2)*(1/(x^2+2*x*y+2*x*z+y^2+2*y*z+z^2+1))^(1/2)*(2*x+2*y+2*z)/((x+y+z)^2+1)^2-(3/2)*(1/(x^2+2*x*y+y^2+1))^(1/2)*(2*x+2*y)/((x+y)^2+1)^2-(3/2)*(1/(y^2+2*y*z+z^2+1))^(1/2)*(2*y+2*z)/((y+z)^2+1)^2-3*(1/(y^2+1))^(1/2)*y/(y^2+1)^2)+(1/8)*{y/((x+y+z)^2+1)+y/((x+y)^2+1)+y/((y+z)^2+1)+y/(y^2+1)}

(6)

"#"Iwant to maximize the equation (5)and (6),under the conditon of x,y,z are negative or positive at the same time.

 

NULL

 

Download maximize.mw

 

I recently downloaded a Maple reader software program from

http://www.crystaloffice.com/

I'mpuzzled as I'm not sure if this has anything to do with the Maple mathematics software,  On cursory observation it just looks like a text editor.

  I was curious to know if there was any software available which would allow people to read & execute a Maple program on the Internet. 

Cheers

   David

 

I have some triangles ABC with vertices

1) A(-13,-5,5), B(-5,11,-11), C(-3,-9,15) has centre of out circle is (3, 3, 3), orthocentre (-27, -9, 3) and centroid (-7, -1, -3). 

2) A(-6,6,-1), B(-5,-1,-3), C(2,10,7) has centre of out circle is (1, 2, 3), orthocentre (-11, 11, -3) and centroid (-3, 5, 1). 

How can I write a program to find a triangle with integer coordinates of vertices, centroid, orthocenter and center of the triangle in geometry 3D? 

Does anyone know how to incorporate the tetrad with the directional derivative? I tried using the SumOverIndices, but get crazy results. I know Maple can find the answer easily because I have done the same thing by hand. What am I missing?

The directional derivative should take the form f,1 = eaμ df/dxμ . The answer is Y,1 = dY/dζ – Ybar dY/du.  I obviously do not get this result.

 


restart; with(Physics); with(Tetrads)

0, "%1 is not a command in the %2 package", Tetrads, Physics

(1)

`#msup(mi("ds",mathcolor = "#af00af"),mn("2",mathcolor = "#af00af"))` := Physics:-`*`(Physics:-`*`(2, dzeta), dzetabar)+Physics:-`*`(Physics:-`*`(2, du), dv)+Physics:-`*`(Physics:-`*`(2, H(zetabar, zeta, v, u)), (du+Physics:-`*`(Ybar(zetabar, zeta, v, u), dzeta)+Physics:-`*`(Y(zetabar, zeta, v, u), dzetabar)-Physics:-`*`(Physics:-`*`(Y(zetabar, zeta, v, u), Ybar(zetabar, zeta, v, u)), dv))^2)

2*dzeta*dzetabar+2*du*dv+2*H(zetabar, zeta, v, u)*(du+Ybar(zetabar, zeta, v, u)*dzeta+Y(zetabar, zeta, v, u)*dzetabar-Y(zetabar, zeta, v, u)*Ybar(zetabar, zeta, v, u)*dv)^2

(2)

X = [zetabar, zeta, v, u]

X = [zetabar, zeta, v, u]

(3)

PDEtools:-declare(`#msup(mi("ds",mathcolor = "#af00af"),mn("2",mathcolor = "#af00af"))`)

Ybar(zetabar, zeta, v, u)*`will now be displayed as`*Ybar

(4)

Setup(automaticsimplification = true, coordinatesystems = (X = [zetabar, zeta, v, u]), metric = 2*dzeta*dzetabar+2*du*dv+2*H(zetabar, zeta, v, u)*(du+Ybar(zetabar, zeta, v, u)*dzeta+Y(zetabar, zeta, v, u)*dzetabar-Y(zetabar, zeta, v, u)*Ybar(zetabar, zeta, v, u)*dv)^2)

[automaticsimplification = true, coordinatesystems = {X}, metric = {(1, 1) = 2*H(X)*Y(X)^2, (1, 2) = 1+2*H(X)*Y(X)*Ybar(X), (1, 3) = -2*H(X)*Y(X)^2*Ybar(X), (1, 4) = 2*H(X)*Y(X), (2, 2) = 2*H(X)*Ybar(X)^2, (2, 3) = -2*H(X)*Ybar(X)^2*Y(X), (2, 4) = 2*H(X)*Ybar(X), (3, 3) = 2*H(X)*Y(X)^2*Ybar(X)^2, (3, 4) = 1-2*H(X)*Y(X)*Ybar(X), (4, 4) = 2*H(X)}]

(5)

g_[]

g_[mu, nu] = (Matrix(4, 4, {(1, 1) = 2*H(X)*Y(X)^2, (1, 2) = 1+2*H(X)*Y(X)*Ybar(X), (1, 3) = -2*H(X)*Y(X)^2*Ybar(X), (1, 4) = 2*H(X)*Y(X), (2, 1) = 1+2*H(X)*Y(X)*Ybar(X), (2, 2) = 2*H(X)*Ybar(X)^2, (2, 3) = -2*H(X)*Ybar(X)^2*Y(X), (2, 4) = 2*H(X)*Ybar(X), (3, 1) = -2*H(X)*Y(X)^2*Ybar(X), (3, 2) = -2*H(X)*Ybar(X)^2*Y(X), (3, 3) = 2*H(X)*Y(X)^2*Ybar(X)^2, (3, 4) = 1-2*H(X)*Y(X)*Ybar(X), (4, 1) = 2*H(X)*Y(X), (4, 2) = 2*H(X)*Ybar(X), (4, 3) = 1-2*H(X)*Y(X)*Ybar(X), (4, 4) = 2*H(X)}))

(6)

``

NULL

NULL

eqn3 := SumOverRepeatedIndices(Physics:-`*`(d_[mu](Y(X)), e_[1, `~mu`]))

((Y(X)*Ybar(X)-1)*(diff(Y(X), zetabar))+(Y(X)*Ybar(X)-1)*(diff(Y(X), zeta))+(diff(Y(X), u)+diff(Y(X), v))*(Y(X)+Ybar(X)))*2^(1/2)/((-(Ybar(X)^2+1)*(Y(X)^2+1)/(Y(X)+Ybar(X))^2)^(1/2)*(2*Y(X)+2*Ybar(X)))

(7)

NULL

``

NULL


Download Directional_Derivative.mw

Dear All,

I'm trying to solve the following in Maple.

minimize(int(0.1e-3+.5*t+0.2e-2*t^2-b*t-a, t = 0 .. 300), location = true)

But Maple told me that the answer is

Float(-infinity), {[{a = Float(infinity), b = Float(infinity)}, Float(-infinity)]}.

I really need to get a kind of numerical answer. Would it be possible? Please Help me!!

https://social.msdn.microsoft.com/Forums/vstudio/en-US/cc2a85ad-30ec-44ed-8c75-636ff71eade2/how-to-convert-integer-or-decimal-number-into-any-base-number?forum=csharpgeneral

1. for example how to convert decimal or integer number into base 3 number, base 5 number etc.

2.how to do logical operation with custom logic table for example,

 

120 special operator 235 

01111000

11101011

 

special operator according to logical table is

1st op 2nd op output
0 0 1
0 1 0
1 0 1
1 1 0

 

  01111000

  11101011

=00010100 = 20

Hi everybody,

is it possible to define an homokinetic joint in MapleSim for multibody modeling? How can I do that?

 

thanks.

Hi,

I'm trying to solve the following non-linear ODE numerically:

by ececuting

but maple gives me this error-message:

"Error, (in dsolve/numeric/make_proc) Could not convert to an explicit first order system due to 'RootOf'"

I couldnt find any useful information in the manual. What does this error mean? Is there something wrong with my maple code or is there just no solution for this particulare differential equation?

 

Thanks in advance

Hi

I have this PDE and was wondering how I can get Maple to solve it

utt+2ut-uxx=18sin(3πx/l)

with conditions u(0,t)=u(l,t)=0 and u(x,0)=ut(x,0)=0

Thanks

James

 

 

 

Could anyone assist in rectifying this error ''Error, (in fsolve) {f[1], f[2], f[3], f[4], f[5], f[6], f[7], f[8], f[9], f[10], f[11], theta[11]} are in the equation, and are not solved for''. Here is the worksheet FDM_Revisit_1.mw

1 2 3 4 5 6 7 Last Page 2 of 1094