MaplePrimes Questions

Search Questions:

Latest Questions Latest Questions Feed

hi

in attached file below not answer found for dsolve?

please help me

thanks..

dsove.mw

restart

J := 1:

PDE := diff(T(z, t), z, z)-.2*(diff(T(z, t), t, t)) = int(.7703831837*(diff(T(z, tau), tau, tau))/(t-tau)^.3, tau = 0 .. t):

with(inttrans):

sol := laplace(PDE, t, s):

sol2 := subs([laplace(T(z, t), t, s) = U(z, t), T(z, 0) = sin(J*Pi*z), (D[2](T))(z, 0) = 0], sol)

diff(diff(U(z, t), z), z)-.2000000000*s^2*U(z, t)+.2000000000*s*sin(Pi*z) = -1.000000000*s^.3000000000*sin(Pi*z)+1.000000000*s^1.300000000*U(z, t)

(1)

sol3 := dsolve([sol2, (D[1](U))(0, t) = 0, (D[1](U))(1, t) = 0], U(z, t))

"sol3 := "

(2)

U(z, t) = invlaplace(rhs(sol3), s, t)

Error, invalid input: rhs expects 1 argument, but received 0

 

sol4 := simplify(subs(z = 0, rhs(sol3)))

Error, invalid input: rhs expects 1 argument, but received 0

 

``

``



Download dsove.mw

 

I'm trying to compute the tensor product of two column vectors as

 

with(LinearAlgebra):

A:=Matrix([[1/sqrt(2)],[0],[0],[1/sqrt(2)]]);

KroneckerProduct(A,A);

 

And the output is a column vector with entries: "16 x 1 Matrix", "Data Type: Anything", "Storage: rectangular", "Order: Fortran_order"

 

The Maple documentation indicates that this function should output the result of the kronecker tensor product of the input matrices, and I've followed the same form as the examples in the documentation... Does anyone know why this isn't working as it should?

> restart;
> libname = [shootlib, libname];
> with(shoot);
Error, invalid input: with expects its 1st argument, pname, to be of type {`module`, package}, but received shoot
> with(plots);
Pr := 10; s = -.1; lambda := 0; Gr := 1.0; Gm := 1.0; beta := -1.20;
10
s = -0.1
0
1.0
1.0
-1.20
> M := 0.; z := .1; Xi := .5; Nt := .5; Nb := .2; l := 5; Nr := .5; epsilon1 := .2; epsilon2 := .2;
0.
0.1
0.5
0.5
0.2
5
0.5
0.2
0.2
> Prff := Pr/(1+4.*N*(1/3));
10
-----------------
1 + 1.333333333 N
> FNS := {f(eta), h(eta), r(eta), u(eta), v(eta), theta(eta), `ϕ`(eta)};
{f(eta), h(eta), r(eta), u(eta), v(eta), theta(eta), ϕ(eta)}
> ODE := {diff(h(eta), eta)+.75*l*f(eta)*h(eta)-(1/4)*l*u(eta)*epsilon2-Nt*(.75*f(eta)*r(eta)-(1/4)*u(eta)*epsilon1+Nb*r(eta)*h(eta)+Nt*r(eta)*r(eta))/Nb = 0, .75*f(eta)*r(eta)+diff(r(eta), eta)-(1/4)*u(eta)*epsilon1+Nb*r(eta)*h(eta)+Nt*r(eta)*r(eta) = 0, diff(v(eta), eta)+3*(f(eta)*v(eta)-u(eta)*u(eta))/(4*Pr)-(M+lambda)*u(eta)+theta(eta)-Nr*`ϕ`(eta) = 0, diff(f(eta), eta) = u(eta), diff(u(eta), eta) = v(eta), diff(theta(eta), eta) = r(eta), diff(`ϕ`(eta), eta) = h(eta)};
/ / d \
{ 0.75 f(eta) r(eta) + |----- r(eta)| - 0.05000000000 u(eta)
\ \ deta /

2 / d \ 3
+ 0.2 r(eta) h(eta) + 0.5 r(eta) = 0, |----- v(eta)| + -- f(eta) v(eta)
\ deta / 40

3 2 / d \
- -- u(eta) + theta(eta) - 0.5 ϕ(eta) = 0, |----- h(eta)|
40 \ deta /

+ 3.75 f(eta) h(eta) - 0.1250000000 u(eta) - 1.875000000 f(eta) r(eta)

2
- 0.5000000000 r(eta) h(eta) - 1.250000000 r(eta) = 0,

d d d
----- f(eta) = u(eta), ----- u(eta) = v(eta), ----- theta(eta) = r(eta),
deta deta deta

d \
----- ϕ(eta) = h(eta) }
deta /
> IC := {f(0) = s, h(0) = xi, r(0) = tau, u(0) = 0, v(0) = alpha(0), theta(0) = 1-(1/4)*epsilon1, `ϕ`(0) = (1/4)*epsilon2};
{f(0) = s, h(0) = xi, r(0) = tau, u(0) = 0, v(0) = alpha(0),

theta(0) = 0.9500000000, ϕ(0) = 0.05000000000}
> L := 2;
2
> BC = {u(L) = 0, theta(L) = 0, `ϕ`(L) = 0};
BC = {u(2) = 0, theta(2) = 0, ϕ(2) = 0}
> S := Shoot(ODE, IC, BC, FNS, [alpha = .42453091564332, tau = -.21166705749821127, xi = -.4944583739651814]);
/ / / d \
Shoot|{ 0.75 f(eta) r(eta) + |----- r(eta)| - 0.05000000000 u(eta)
\ \ \ deta /

2 / d \ 3
+ 0.2 r(eta) h(eta) + 0.5 r(eta) = 0, |----- v(eta)| + -- f(eta) v(eta)
\ deta / 40

3 2 / d \
- -- u(eta) + theta(eta) - 0.5 ϕ(eta) = 0, |----- h(eta)|
40 \ deta /

+ 3.75 f(eta) h(eta) - 0.1250000000 u(eta) - 1.875000000 f(eta) r(eta)

2
- 0.5000000000 r(eta) h(eta) - 1.250000000 r(eta) = 0,

d d d
----- f(eta) = u(eta), ----- u(eta) = v(eta), ----- theta(eta) = r(eta),
deta deta deta

d \
----- ϕ(eta) = h(eta) }, {f(0) = s, h(0) = xi, r(0) = tau, u(0) = 0,
deta /

v(0) = alpha(0), theta(0) = 0.9500000000, ϕ(0) = 0.05000000000}, BC,

{f(eta), h(eta), r(eta), u(eta), v(eta), theta(eta), ϕ(eta)}, [

alpha = 0.42453091564332, tau = -0.21166705749821127,

\
xi = -0.4944583739651814]|
/
RungeKutta(ODE, BC, alpha = .42453091564332, tau = -.21166705749821127, xi = -.4944583739651814, output=plot);
/ / / d \
RungeKutta|{ 0.75 f(eta) r(eta) + |----- r(eta)| - 0.05000000000 u(eta)
\ \ \ deta /

2 / d \ 3
+ 0.2 r(eta) h(eta) + 0.5 r(eta) = 0, |----- v(eta)| + -- f(eta) v(eta)
\ deta / 40

3 2 / d \
- -- u(eta) + theta(eta) - 0.5 ϕ(eta) = 0, |----- h(eta)|
40 \ deta /

+ 3.75 f(eta) h(eta) - 0.1250000000 u(eta) - 1.875000000 f(eta) r(eta)

2
- 0.5000000000 r(eta) h(eta) - 1.250000000 r(eta) = 0,

d d d
----- f(eta) = u(eta), ----- u(eta) = v(eta), ----- theta(eta) = r(eta),
deta deta deta

d \
----- ϕ(eta) = h(eta) }, BC, alpha = 0.42453091564332,
deta /

\
tau = -0.21166705749821127, xi = -0.4944583739651814, output = plot|
/
>

 

 

Dear sir 

in the above problem im geiitng the problem with , with(shoot) command and even it is not executing at

S := Shoot(ODE, IC, BC, FNS, [alpha = .42453091564332, tau = -.21166705749821127, xi = -.4944583739651814]) this command, here alpha,tau and zi variable should change.

> restart;
> with(plots);
> Eql := diff(f(eta), eta, eta, eta)+.5*f(eta)*(diff(f(eta), eta, eta)) = 0;
/ d / d / d \\\ / d / d \\
|----- |----- |----- f(eta)||| + 0.5 f(eta) |----- |----- f(eta)|| = 0
\ deta \ deta \ deta /// \ deta \ deta //
> blt := 10;
10
> bcs1 := f(0) = f0, (D(f))(0) = 0, (D(f))(blt) = 1;
f(0) = f0, D(f)(0) = 0, D(f)(10) = 1
> L := [0];
[0]
> for k to 1 do R := dsolve(eval({Eql, bcs1}, f0 = L[k]), f(eta), numeric, output = listprocedure); X1 || k := rhs(R[3]); X2 || k := rhs(R[4]) end do;
[
[eta = proc(eta) ... end;, f(eta) = proc(eta) ... end;,
[

d
----- f(eta) = proc(eta) ... end;,
deta

d / d \ ]
----- |----- f(eta)| = proc(eta) ... end;]
deta \ deta / ]
proc(eta) ... end;
proc(eta) ... end;
> print([X2], [1 .. 1, 0]);

 

dear sir/madam

 

in the above problem i should get the asnser (at print line) but its not getting so please can you tell me why it is not getting.

Let us denote the cardinality of the subsets of {1,..,n} without two consequent numbers
(e.g. {..,4,5,..} is not allowed) by A[n]. What is the asymptotics of A[n] as n approaches infinity?
The same question for the case of three consequent numbers.
Here is my math experiment.
restart; L := combinat:-powerset({seq(i, i = 1 .. 11)}):#n = 11
nops(%);
2048
M := selectremove(c-> min([seq(c[k+1]-c[k], k = 1 .. nops(c)-1)]) = 1, L)[2]:
nops(M);
233
The other results are [11, 233], [15, 1597], [20, 17711], [21, 28657], [22, 46368].
These points are very close to some straight line in logarithmic scale as
plot([[11, 233], [15, 1597], [20, 17711], [21, 28657], [22, 46368]], axis[2] = [mode = log]);
shows. However, the ones do not exactly belong to a straight line:
evalf(ln(46368)-ln(28657), 15);
0.4812118247230
evalf(ln(28657)-ln(17711), 15);
0.48121182594077
eval(exp(.4812118247230*n), n = 15);
1364.000725  .
These results suggest that A[n] is asymptotically equal to exp(c*n) with c about 0.481.
I have not succeeded to find out the nature of the constant c.

question_on_asymptotics.mw

I need to solve an ode of the type ay''+by'+cy=f(x) using cubic b spline.

can any one help me with the code or algorithm. Thanks

N := 4;
print(`output redirected...`); # input placeholder
4
y := sum(A[2*n].cos(2.*n.x), n = 0 .. N);

eq1 := diff(y, `$`(x, 2))+(a+2*q*cos(2*x))*y

eq2 := map(combine, eq1, trig)

for i from 0 to 4 do eq4[i] := coeff(eq2, cos(2*n*x)) end do

From these I want to extract the co-ffficients of cos(0x),cos(2x),cos(4x)..

and form a simultaneous linear equation containg A0,A2,A4

The solution is 

aA0+qA2=0

2q*A0+(a-4)*A2+q*A4=0

Can anybody tell me how to do it

so I'm trying this:

restart;

sigma := 0.143e-18;

l_0 := 1.87;

l0 := 1.87;

roll := rand(0 .. 25.0);

f_gauss := proc (x) options operator, arrow; exp(-(1/2)*x^2/`σ_x`^2)/sqrt(2*Pi*`σ_x`^2) end proc;

f_norm := proc (dx) options operator, arrow; int(f_gauss(x), x = -(1/2)*dx .. (1/2)*dx) end proc;

sol_gauss := proc (mix) options operator, arrow; evalf(eval(-ln((int(f_gauss(x)*exp(-2*sigma*N2O*sqrt((1/4)*l_0^2-x^2)), x = -(1/2)*dx .. (1/2)*dx))/f_norm(dx))/(sigma*N2O), [N2O = 0.25e20*mix/100])) end proc;

for ii to 10 do

a := roll();

eval(sol_gauss(a), [dx = l_0, `σ_x` = l0])

end do

Hello people in mapleprimes,

I want to ask you about how to make a function of function which makes a logarithmic derivative of a function.

For example, x^3 is mapped as h(x^3)=3h(x), h(x+y)=(x/(x+y))*h(x)+(y/(x+y))*h(y),

h(g(x)*k(x))=h(g(x))+h(k(x)).

I hope someone give me a hing to create h.

 

Best wishes.

taro

 

 

 

 


environment
- Windows 10 LTSB 64-bit
- Intel Haswell/Skylake

sequence:
1. install Windows unattended
2. install scheduletask for software installation (runs with systemaccount on windows starts and available network)
3. task runs a cmdfile(1) that map a networkshare and runs another cmdfile(2) on the networkshare
4. cmdfile(2) runs softwareinstallation one by one, every install is a seperate cmdfile
5. cmfile(maple.cmd) starts maple installation with the following cmdline
-->
START "Maple 2016" /WAIT "N:\Math\Maple\Maple2016Windowsx86Installer.exe" --mode unattended --desktopshortcut 0 --shortcutname "Maple 2016" --configureMatlab 0 --matlabpath "" --licenseType network --serverName "licserver.company.domain" --portnumber 27000
<--

Note: licenseserver and port are configured correctly, tested with manual installation of Maple

effects:
- installer starts and install some files (found unter C:\ProgramFiles\Maple 2016)
- installer persists in memory 
- no startmenuentry for maple found
- no installler logfile in maple directory found
- install not finished

- try it with --optionfile ... -> hangs
- try copying all files to local harddisk and run it from there -> hangs
- try it running with a local administrator (using psexec) -> hangs

- if im logged in and run the installer cmdline manually with adminconsole or with systemaccount (psexec -i -s -d cmd) the installation runs perfect, but this is not what i need to install hundreds of machines

Dear Community,

I have a complicated function with two independent variables, namely QD( tD,  rD ). I would like to explore its behavior in a semilog plot in the range of tD = 1.0 .. 1000.0 with changing rDs, where I would like to change the values of rD with a slider of the Explore command. I've developed the attached code, yet it gives me an error message, "unexpected option... " Could you pls. have a look at it what do I do wrong?

Tx for the kind help in advance

best regards

Andras

 Explore_VEHQD.mw

Combining graphs...

September 22 2016 montse 5

Hi

Can anyone tell me how to combine several graphs into one? Fo instance I have one graph with x going from 0-1,another with x going from 1-20 and yet another with x going from 20-21. I can plot them individually but how do I put all three together?

I'm sorry I'm not doing a very good job explaining, but I hope it is understandable.

 

 

 

Hello

Thanks to the help of several list members I managed to translate and update some old procedures.  These procedures were part of a packcage and they all had help files.   Here is an example

 

# E. Mendes - 25/04/94

`help/text/sampling`:=TEXT(``,
`FUNCTION: sampling - finds the discretized model`,
` `,
`CALLING SEQUENCE:`,
` sampling(f)`,
` sampling(f,k)`,
` sampling(f,k,vars)`,
`PARAMETERS:`,
` f - state space`,
` k - order of approximation`,
` vars - variables`,
``,
`SYNOPSIS:`,
`- sampling(f,k) returns a discrete approximation for a continuous`,
` system`,``,
` dx(t)/dt=f(x(t),u(t)) `,
``,
`EXAMPLE: `,``,
`> with(linalg):`,
`> f:=vector([x2,x3,-x1+x2^2+2*x3]):`,
`> sampling(f,1)`,
``,
` 2`,
` [- x1, x2 + x1 ]`,``,
`SEE ALSO: fixpoind, fixpoinc`):

 

I have browsed the help documentation but I must confess I don't feel comfortable to modify the help database.  Do I have to wrap all the functions up as a package and then write the help files?   I am lost here.  Any help will be most welcome.

Many thanks

 

Ed

 

Hello,

I would like to silmplify a trigonometric equation with some squares. I'm sure this equation can be reduced but i didn't manage to simplify it with Maple.

Here is the equation (named condition in the maple file) that I would like to simplify:

simplification_condition_de_compatibilité.mw

May you help me to simplify this trigonometric equation?

I would like simplification if time the pattern cos()^2+sin()^2 appears.

Thanks a lot for your help

1 2 3 4 5 6 7 Last Page 3 of 1360