MaplePrimes Questions

Hi, everybody.

I have a problem when I try to plot3d a sub-surface from a surface as follows:


 

S := proc (u, v) options operator, arrow; Matrix([[40*u], [80*v], [10*u^2*v+20*u*v+15]]) end proc;

proc (u, v) options operator, arrow; Matrix([[40*u], [80*v], [10*u^2*v+20*u*v+15]]) end proc

(1)

S(u, v)

Matrix(3, 1, {(1, 1) = 40*u, (2, 1) = 80*v, (3, 1) = 10*u^2*v+20*u*v+15})

(2)

 

p:= proc(u,v) if u<v then S(u,v) else S(u,v)+10 end if end proc:

h:= proc(u) 2*u  end proc:

plot3d(p, 0 .. 1, 0 .. h)

Warning, unable to evaluate the function to numeric values in the region; see the plotting command's help page to ensure the calling sequence is correct

 

 

``


 

Download sub-surface.mw

sub-surface.mw

 

Please help me!

 

Thanks and have a nice day.

 

 

how can i plot tangent function without its Asymptote on kPi/2s ? actuallt i want to plot without its vertical Asymptote, could anybody help? tnx
 

restart:

plot(tan(x),x=-2*Pi..2*Pi,style = line,color = "Blue",legend = "tangent Plot",axes=boxed,gridlines);

 

 


 

Download plot.mw

i want to know the area under a diagram plotted by pdsolve, how can i do that? for example in below , what is the area under p1 diagram?


 

restart:k:=5;

5

(1)

EQ:=diff(u(x,t),t)=k*diff(u(x,t),x$2);

diff(u(x, t), t) = 5*(diff(diff(u(x, t), x), x))

(2)

ibc:=u(0,t)=0,u(1,t)=0, u(x,0) = x;

u(0, t) = 0, u(1, t) = 0, u(x, 0) = x

(3)

sol:=pdsolve({EQ},{ibc},numeric);

_m2021168030176

(4)

p1:=sol:-plot(u,x=0.5,t=0...10,style = line,color = "Blue",legend = "heat Plot",axes=boxed);

 

M:=op(1,op(1,p1));

M := Array(1..201, 1..2, {(1, 1) = .0, (1, 2) = .5, (2, 1) = 0.5e-1, (2, 2) = .2702110502740721, (3, 1) = .1, (3, 2) = -0.176887059080428e-1, (4, 1) = .15, (4, 2) = -0.6515347962762406e-2, (5, 1) = .2, (5, 2) = 0.74109221595503715e-2, (6, 1) = .25, (6, 2) = -0.6178984348254404e-2, (7, 1) = .3, (7, 2) = 0.49645329554988925e-2, (8, 1) = .35, (8, 2) = -0.3948699801548904e-2, (9, 1) = .4, (9, 2) = 0.31161325326115076e-2, (10, 1) = .45, (10, 2) = -0.24369292293079273e-2, (11, 1) = .5, (11, 2) = 0.18845070914387395e-2, (12, 1) = .55, (12, 2) = -0.14366378752131666e-2, (13, 1) = .6, (13, 2) = 0.10748767238662861e-2, (14, 1) = .65, (14, 2) = -0.7839388660633711e-3, (15, 1) = .7, (15, 2) = 0.5511660027174686e-3, (16, 1) = .75, (16, 2) = -0.3660810752890637e-3, (17, 1) = .8, (17, 2) = 0.22001797006812284e-3, (18, 1) = .85, (18, 2) = -0.10581369353881973e-3, (19, 1) = .9, (19, 2) = 0.1755251750102873e-4, (20, 1) = .95, (20, 2) = 0.4964665498398858e-4, (21, 1) = 1.0, (21, 2) = -0.9980698165105276e-4, (22, 1) = 1.05, (22, 2) = 0.1362404856962589e-3, (23, 1) = 1.1, (23, 2) = -0.16167000912668705e-3, (24, 1) = 1.15, (24, 2) = 0.17833050358069153e-3, (25, 1) = 1.2, (25, 2) = -0.18805314257842951e-3, (26, 1) = 1.25, (26, 2) = 0.19233515285281392e-3, (27, 1) = 1.3, (27, 2) = -0.19239777469550633e-3, (28, 1) = 1.35, (28, 2) = 0.18923435555607597e-3, (29, 1) = 1.4, (29, 2) = -0.18365024366673088e-3, (30, 1) = 1.45, (30, 2) = 0.17629586775928352e-3, (31, 1) = 1.5, (31, 2) = -0.16769415545232156e-3, (32, 1) = 1.55, (32, 2) = 0.15826324867687376e-3, (33, 1) = 1.6, (33, 2) = -0.1483353129733858e-3, (34, 1) = 1.65, (34, 2) = 0.1381721031382132e-3, (35, 1) = 1.7, (35, 2) = -0.12797783595325005e-3, (36, 1) = 1.75, (36, 2) = 0.11790982779578369e-3, (37, 1) = 1.8, (37, 2) = -0.10808727763435372e-3, (38, 1) = 1.85, (38, 2) = 0.9859851163881829e-4, (39, 1) = 1.9, (39, 2) = -0.8950695218043435e-4, (40, 1) = 1.95, (40, 2) = 0.8085602954949057e-4, (41, 1) = 2.0, (41, 2) = -0.7267321775920382e-4, (42, 1) = 2.05, (42, 2) = 0.6497334507523223e-4, (43, 1) = 2.1, (43, 2) = -0.5776130436199765e-4, (44, 1) = 2.15, (44, 2) = 0.5103426709812118e-4, (45, 1) = 2.2, (45, 2) = -0.4478348725852213e-4, (46, 1) = 2.25, (46, 2) = 0.3899576658643508e-4, (47, 1) = 2.3, (47, 2) = -0.336546405833609e-4, (48, 1) = 2.35, (48, 2) = 0.28741334410836633e-4, (49, 1) = 2.4, (49, 2) = -0.2423552947809686e-4, (50, 1) = 2.45, (50, 2) = 0.20115974495047912e-4, (51, 1) = 2.5, (51, 2) = -0.16360968960468515e-4, (52, 1) = 2.55, (52, 2) = 0.12948742231058999e-4, (53, 1) = 2.6, (53, 2) = -0.985774731176686e-5, (54, 1) = 2.65, (54, 2) = 0.706688518346671e-5, (55, 1) = 2.7, (55, 2) = -0.4555672725651303e-5, (56, 1) = 2.75, (56, 2) = 0.23043650036730538e-5, (57, 1) = 2.8, (57, 2) = -0.29404079279315267e-6, (58, 1) = 2.85, (58, 2) = -0.14933413612624144e-5, (59, 1) = 2.9, (59, 2) = 0.30749105483557417e-5, (60, 1) = 2.95, (60, 2) = -0.4466869448461453e-5, (61, 1) = 3.0, (61, 2) = 0.5684494809229467e-5, (62, 1) = 3.05, (62, 2) = -0.67421491593684444e-5, (63, 1) = 3.1, (63, 2) = 0.765330108066053e-5, (64, 1) = 3.15, (64, 2) = -0.8430551865031369e-5, (65, 1) = 3.2, (65, 2) = 0.9085666798487518e-5, (66, 1) = 3.25, (66, 2) = -0.9629609655930039e-5, (67, 1) = 3.3, (67, 2) = 0.10072579272402201e-4, (68, 1) = 3.35, (68, 2) = -0.1042404728762369e-4, (69, 1) = 3.4, (69, 2) = 0.1069279635035891e-4, (70, 1) = 3.45, (70, 2) = -0.10886958224421352e-4, (71, 1) = 3.5, (71, 2) = 0.11014051364892259e-4, (72, 1) = 3.55, (72, 2) = -0.11081017636391213e-4, (73, 1) = 3.6, (73, 2) = 0.11094257929051255e-4, (74, 1) = 3.65, (74, 2) = -0.11059666495657345e-4, (75, 1) = 3.7, (75, 2) = 0.109826638880031e-4, (76, 1) = 3.75, (76, 2) = -0.10868228414258878e-4, (77, 1) = 3.8, (77, 2) = 0.10720926073958364e-4, (78, 1) = 3.85, (78, 2) = -0.1054493895470911e-4, (79, 1) = 3.9, (79, 2) = 0.1034409209623252e-4, (80, 1) = 3.95, (80, 2) = -0.10121878843963985e-4, (81, 1) = 4.0, (81, 2) = 0.9881484727059153e-5, (82, 1) = 4.05, (82, 2) = -0.9625809905064345e-5, (83, 1) = 4.1, (83, 2) = 0.9357490234275213e-5, (84, 1) = 4.15, (84, 2) = -0.9078917009490728e-5, (85, 1) = 4.2, (85, 2) = 0.87922554398473e-5, (86, 1) = 4.25, (86, 2) = -0.8499461919063325e-5, (87, 1) = 4.3, (87, 2) = 0.8202300151001906e-5, (88, 1) = 4.35, (88, 2) = -0.7902356191213331e-5, (89, 1) = 4.4, (89, 2) = 0.7601052464222056e-5, (90, 1) = 4.45, (90, 2) = -0.72996608149495766e-5, (91, 1) = 4.5, (91, 2) = 0.699931465092186e-5, (92, 1) = 4.55, (92, 2) = -0.6701020229904285e-5, (93, 1) = 4.6, (93, 2) = 0.6405667145430395e-5, (94, 1) = 4.65, (94, 2) = -0.6114038060383664e-5, (95, 1) = 4.7, (95, 2) = 0.5826817736440689e-5, (96, 1) = 4.75, (96, 2) = -0.5544601404792595e-5, (97, 1) = 4.8, (97, 2) = 0.52679025211894145e-5, (98, 1) = 4.85, (98, 2) = -0.4997159946020307e-5, (99, 1) = 4.9, (99, 2) = 0.47327445878452e-5, (100, 1) = 4.95, (100, 2) = -0.4474965546586055e-5, (101, 1) = 5.0, (101, 2) = 0.4224075790442743e-5, (102, 1) = 5.05, (102, 2) = -0.3980277398539528e-5, (103, 1) = 5.1, (103, 2) = 0.3743726399348483e-5, (104, 1) = 5.15, (104, 2) = -0.35145372330544755e-5, (105, 1) = 5.2, (105, 2) = 0.3292786864253045e-5, (106, 1) = 5.25, (106, 2) = -0.3078518569671755e-5, (107, 1) = 5.3, (107, 2) = 0.28717454240173786e-5, (108, 1) = 5.35, (108, 2) = -0.2672453505531053e-5, (109, 1) = 5.4, (109, 2) = 0.2480604841418905e-5, (110, 1) = 5.45, (110, 2) = -0.22961401119743008e-5, (111, 1) = 5.5, (111, 2) = 0.21189811309571416e-5, (112, 1) = 5.55, (112, 2) = -0.19490331186010634e-5, (113, 1) = 5.6, (113, 2) = 0.17861867825155937e-5, (114, 1) = 5.65, (114, 2) = -0.16303202207033257e-5, (115, 1) = 5.7, (115, 2) = 0.14813006599365237e-5, (116, 1) = 5.75, (116, 2) = -0.13389860418240196e-5, (117, 1) = 5.8, (117, 2) = 0.12032264680435905e-5, (118, 1) = 5.85, (118, 2) = -0.10738655154134225e-5, (119, 1) = 5.9, (119, 2) = 0.9507414307327055e-6, (120, 1) = 5.95, (120, 2) = -0.8336882146176523e-6, (121, 1) = 6.0, (121, 2) = 0.7225366029120385e-6, (122, 1) = 6.05, (122, 2) = -0.6171149536407717e-6, (123, 1) = 6.1, (123, 2) = 0.5172500469062582e-6, (124, 1) = 6.15, (124, 2) = -0.422767804599377e-6, (125, 1) = 6.2, (125, 2) = 0.3334939363034557e-6, (126, 1) = 6.25, (126, 2) = -0.24925451730719557e-6, (127, 1) = 6.3, (127, 2) = 0.1698765042164462e-6, (128, 1) = 6.35, (128, 2) = -0.9518819325289293e-7, (129, 1) = 6.4, (129, 2) = 0.25019625957658297e-7, (130, 1) = 6.45, (130, 2) = 0.4079705332935711e-7, (131, 1) = 6.5, (131, 2) = -0.10242728416703212e-6, (132, 1) = 6.55, (132, 2) = 0.16003381713738053e-6, (133, 1) = 6.6, (133, 2) = -0.21377647792892648e-6, (134, 1) = 6.65, (134, 2) = 0.2638119651684455e-6, (135, 1) = 6.7, (135, 2) = -0.31029367903289395e-6, (136, 1) = 6.75, (136, 2) = 0.3533715778983202e-6, (137, 1) = 6.8, (137, 2) = -0.3931920604894687e-6, (138, 1) = 6.85, (138, 2) = 0.4298978711906126e-6, (139, 1) = 6.9, (139, 2) = -0.4636280263535863e-6, (140, 1) = 6.95, (140, 2) = 0.494517759612214e-6, (141, 1) = 7.0, (141, 2) = -0.5226984843620009e-6, (142, 1) = 7.05, (142, 2) = 0.5482977717131691e-6, (143, 1) = 7.1, (143, 2) = -0.5714393423533197e-6, (144, 1) = 7.15, (144, 2) = 0.5922430708876365e-6, (145, 1) = 7.2, (145, 2) = -0.610825001331253e-6, (146, 1) = 7.25, (146, 2) = 0.6272973725430698e-6, (147, 1) = 7.3, (147, 2) = -0.641768652482882e-6, (148, 1) = 7.35, (148, 2) = 0.6543435802710991e-6, (149, 1) = 7.4, (149, 2) = -0.6651232151103739e-6, (150, 1) = 7.45, (150, 2) = 0.6742049912106031e-6, (151, 1) = 7.5, (151, 2) = -0.6816827779311618e-6, (152, 1) = 7.55, (152, 2) = 0.6876469444194619e-6, (153, 1) = 7.6, (153, 2) = -0.6921844280904861e-6, (154, 1) = 7.65, (154, 2) = 0.6953788063481056e-6, (155, 1) = 7.7, (155, 2) = -0.6973103710014924e-6, (156, 1) = 7.75, (156, 2) = 0.6980562048815929e-6, (157, 1) = 7.8, (157, 2) = -0.6976902602061175e-6, (158, 1) = 7.85, (158, 2) = 0.6962834382846133e-6, (159, 1) = 7.9, (159, 2) = -0.6939036701932665e-6, (160, 1) = 7.95, (160, 2) = 0.690615998086224e-6, (161, 1) = 8.0, (161, 2) = -0.6864826568410622e-6, (162, 1) = 8.05, (162, 2) = 0.6815631557688252e-6, (163, 1) = 8.1, (163, 2) = -0.6759143601450263e-6, (164, 1) = 8.15, (164, 2) = 0.669590572344911e-6, (165, 1) = 8.2, (165, 2) = -0.6626436123890619e-6, (166, 1) = 8.25, (166, 2) = 0.6551228977290213e-6, (167, 1) = 8.3, (167, 2) = -0.647075522119317e-6, (168, 1) = 8.35, (168, 2) = 0.6385463334437125e-6, (169, 1) = 8.4, (169, 2) = -0.629578010378859e-6, (170, 1) = 8.45, (170, 2) = 0.6202111377936157e-6, (171, 1) = 8.5, (171, 2) = -0.6104842807971703e-6, (172, 1) = 8.55, (172, 2) = 0.6004340573606388e-6, (173, 1) = 8.6, (173, 2) = -0.5900952094508935e-6, (174, 1) = 8.65, (174, 2) = 0.5795006726227363e-6, (175, 1) = 8.7, (175, 2) = -0.5686816440282655e-6, (176, 1) = 8.75, (176, 2) = 0.5576676488088356e-6, (177, 1) = 8.8, (177, 2) = -0.5464866048451384e-6, (178, 1) = 8.85, (178, 2) = 0.5351648858455677e-6, (179, 1) = 8.9, (179, 2) = -0.5237273827621483e-6, (180, 1) = 8.95, (180, 2) = 0.5121975635274654e-6, (181, 1) = 9.0, (181, 2) = -0.5005975311119593e-6, (182, 1) = 9.05, (182, 2) = 0.488948079906314e-6, (183, 1) = 9.1, (183, 2) = -0.4772687504359755e-6, (184, 1) = 9.15, (184, 2) = 0.46557788242095225e-6, (185, 1) = 9.2, (185, 2) = -0.45389266619653036e-6, (186, 1) = 9.25, (186, 2) = 0.4422291925122823e-6, (187, 1) = 9.3, (187, 2) = -0.43060250073186364e-6, (188, 1) = 9.35, (188, 2) = 0.4190266254556287e-6, (189, 1) = 9.4, (189, 2) = -0.4075146415927183e-6, (190, 1) = 9.45, (190, 2) = 0.39607870790862633e-6, (191, 1) = 9.5, (191, 2) = -0.38473010907775763e-6, (192, 1) = 9.55, (192, 2) = 0.37347929627010353e-6, (193, 1) = 9.6, (193, 2) = -0.362335926303425e-6, (194, 1) = 9.65, (194, 2) = 0.35130889939221703e-6, (195, 1) = 9.7, (195, 2) = -0.34040639552618525e-6, (196, 1) = 9.75, (196, 2) = 0.3296359095107469e-6, (197, 1) = 9.8, (197, 2) = -0.3190042847032402e-6, (198, 1) = 9.85, (198, 2) = 0.30851774547799635e-6, (199, 1) = 9.9, (199, 2) = -0.29818192845446557e-6, (200, 1) = 9.95, (200, 2) = 0.2880019125209349e-6, (201, 1) = 10.0, (201, 2) = -0.2779822476886622e-6}, datatype = float[8], order = C_order)

(5)

 

 

 

 


 

Download heat_equation_(2).mw

Hello everyone.

Please can I meet with Computational or/and Numerical anlysts that have worked or working on the algorihms particularly (Runge Kutta Nystrom, Block multistep methods including hybrid and Block Boundaru Value methods) for the solution of both IVP and BVP.

I will appreciante if I can learn from them and possibly collaborate with them. Thank you in anticipation of your positive response.

How to write a code find fundamental matrix of the following Matrix?

restart; with(LinearAlgebra): A:=Matrix([[0, 1, 0, 0], [-a, 0, b, 0], [0, 0, 0, 1], [c, 0, -d, 0]]);eigenvectors(A);

where a,b,c,d∈IR.

I want to find eigenvalues and eigenvectors and then want to calculate e^( λ i)*ri  where λi's are eigenvalues, ri's are eigenvectors of A for i=1,2,3,4  respectively.

Then, I want to calculate Wronskian of the matrix which consists of vectors e^(λi)*ri in the columns. Could you help me?

See: Fundamental Matrix

Find and classify all the critical point(s) for 

f(x,y)=x3 + 3xy2 - 15x + y3 - 15y .

updated

after refer from

https://en.wikipedia.org/wiki/List_of_representations_of_e

exponential1 := sum((1/n!), n=0..infinity);
exponential1 is not a decimal number, it is exp(1)
 
hoyeung1:= sum((Int(exp(LambertW(1/(-1+x))*(-1+x)), x)), x=0..infinity);
 
hoyeung2:= sum((Int(exp(LambertW(1/(-1+x!))*(-1+x!)), x)), x=0..infinity);
 
how to evalute hoyeung1 or hoyeung2 as a decimal number?
 
how to evalute hoyeung^x as a decimal number function is func1 := proc(x) return hoyeung^x end proc:
 
but i do not know whether sum((Int(exp(LambertW(1/(-1+x))*(-1+x)), x))*m^x, x=0..infinity) = hoyeung^x
 
can limit(1+(Int(exp(LambertW(1/(-1+x))*(-1+x)), x)))^x, x=infinity) = hoyeung^1 ?

I need a help from someone who knows the GRTensor commands.

If you create a tensor of rank 2 using the grdef ("F {(a) (b)}"). Until then, okay!

However, I would like to define each of the 16 tensor components and I do not know how to do.

Could someone help me?

Thank you very much!

sol := dsolve(diff(ln(y(x)),x) = y(x)^(1/(1-y(x))), y(x));
x-Intat(_a^(-(-2+_a)/(-1+_a)), _a = y(x))+_C1 = 0
 

the solution is not y(x) = , but y(x) at the right hand side

Lee := (-1+Int(exp(LambertW(1/(-1+t))*(-1+t)), t=1..x))/(Int(exp(LambertW(1/(-1+t))*(-1+t)), t=1..x));
sum(unknown, n=1..infinity) = Lee
 
how to find unknown?
complexpoint run a long time
there is no option numpoints in complexplot, how to fasten it?
 
Lee := (-1+Int(exp(LambertW(1/(-1+t))*(-1+t)), t=1..x))/(Int(exp(LambertW(1/(-1+t))*(-1+t)), t=1..x));
complexplot(Lee, x = 0 .. 1);
Lee := Re(-1+Int(exp(LambertW(1/(-1+t))*(-1+t)), t=1..x))/(Int(exp(LambertW(1/(-1+t))*(-1+t)), t=1..x));
plot(Lee, x = 0 .. 2, numpoints = 5);
Lee := Im(-1+Int(exp(LambertW(1/(-1+t))*(-1+t)), t=1..x))/(Int(exp(LambertW(1/(-1+t))*(-1+t)), t=1..x));
plot(Lee, x = 0 .. 2, numpoints = 5);

Dear Sirs,

I would very much appreciate if you could help me sorting out the attached problem that Maple 2017 is giving a wrong result.

Y s.

My code:

I want to define the Kronecker delta function and compute its integral that is 1, but Maple guives 0 that is a wrong answer.
I would very much appreciate if you could help me sorting out this problem.

My e-mail: a3portela@gmail.com 

Untitled.pdf

Hi,

I want to solve the integral with respect to Gamma function but I can not obtain it by maple. the lower limit "a" is very close to zero. Please direct me. Thank you

Integral.mw


 

 

 

 

Is there geometric or statistical meaning for ln(dy/dx) = 0?

is there any feature in vector field plot when ln(dy/dx) = 0?

1 2 3 4 5 6 7 Last Page 3 of 1468