MaplePrimes Questions

Search Questions:

Latest Questions Latest Questions Feed

Determine the exact solution to the initial value problem

 

y'(x)=   (y(x)(20-y(x)))/80 , y(0)=1

                

 Compute a polynomial approximation to y(x). Plot this polynomial approximation together with y(x) on the same axes for x∈[0,20]. Choose different colours and linestyles for each curve.

 

Investigate whether or not it is possible to choose Order to be large enough to ensure that the plots of the polynomial approximation and y(x) are indistinguishable over the [0,20] interval? If this is possible, determine the minimum value of Order required. If you think that it is not possible, explain why not.

 

 

I tried

des := diff(y(x), x) = (1/80)*(y(x))(20-y(x))

and

ics := y(0) = 1

then i type

soln := dsolve({des, ics}, {y(x)})

came up with

y(x) = RootOf(x-(Int(80/_a(20-_a), _a = _b .. _Z))+80*(Int(1/_a(20-_a), _a = _b .. 1)))

 

then i tried 

Y := convert(rhs(soln), polynom)

it gives me the same thing

 

i put

PY := plot(y, x = 0 .. 20)

then it's error...

 

what should I do next?

 

Piecewise command...

November 20 2014 ctc 15

A function f is defined on R by

 

f(x):= (1+a|x|)^1/x      , x<0

         B                      ,  x=0

         ln(1+(a^2)|x|)/x , x>0

 

where α and β are constants. Investigate whether it is possible to choose α and β so
as to ensure that f is real-valued and continuous at x = 0. Compute any such values
for α and β correct to 10 significant figures. Make use of the piecewise command in
plotting a graph of any resulting continuous function(s) f over the range −20 ≤ x ≤ 20.

 

I used the help in Maple and manage to get 

f = piecewise(x < 0, (1+alpha*abs(x))^(1/x), x = 0, beta, x > 0, ln(1+alpha^2*abs(x))/x)

 

Not sure about how to compute a and B...

What does it mean by  f is real-valued and continuous at x = 0?

 

I have a three paramter ode problem that involves three tanks with given initial concentrations.  Overtime the concentration equalizes but one of the steps is to determine all bifurcation values.  Not sure how to continue with this number of variables.

 This is our given system with initial conditions

sys_ode := diff(x(t),t) = (-r*x(t))/100+0+(r*z(t))/50, 
> diff(y(t),t) = (r*x(t))/100+(-r*y(t))/25+0,
> diff(z(t),t) = 0+(r*y(t))/25+(-r*z(t))/50;
> x0:=0; y0 := 200; z0:=0;

I have denotation like A[0], A[1], A[2], A[3]... But one package doesn't allow to use indexed variables.

I'd like to change denotation. For example, to A0, A1, A2, A3, but I don't know how to do it automatically...

Hello,

I would like to copy/ paste my maplesim model in microsoft visio.

The idea is to create a vectorial illustration for presentation.

I manage to do this with simulink but not with Maplesim.

Apparently, when I go in visio, there is no possibility to copy like a metafile.

Is there a possibility to copy the object of a Maplesim model in a software like visio or illustrator so as to be able to create vectorial illustration for presentation ?

Thank you for your help.

limit evaluation...

November 20 2014 Aakanksha 20

> restart:
> m:=2; k:=1.0931; a:=k-m; b:=k+m-1;
m := 2
k := 1.0931
a := -0.9069
b := 2.0931
> z:=(k*m)/10^(0.1*10);
z := 0.2186200000
> simplify(((10^(0.1*yo))^((b-a+2*p-1)/2)*z^((b-a+2*p+1)/2)*GAMMA((1-(b-a+2*p))/2))/(p!*GAMMA(p-a+1)*GAMMA(1+((1-(b-a+2*p))/2))));
1 / 
---------------------- \0.3183098861 sin(3.141592654 p + 3.141592654) exp(
GAMMA(p + 1.906900000) 

-3.040840432 - 1.520420216 p + 0.2302585095 yo) (exp(0.2302585095 yo)) GAMMA(
\
-1. - 1. p)/
> [seq(limit(.3183098861*sin(3.141592654*p+3.141592654)*exp(-3.040840432-1.520420216*p+.2302585095*yo)*(exp(.2302585095*yo))^p*GAMMA(-1.-1.*p)/GAMMA(p+1.906900000),p=k),k=0..10)]
Warning, inserted missing semicolon at end of statement, ...=k),k=0..10)];
[ / 1 / 
[limit|---------------------- \0.3183098861 sin(3.141592654 p + 3.141592654) 
[ \GAMMA(p + 1.906900000)


exp(-3.040840432 - 1.520420216 p + 0.2302585095 yo) (exp(0.2302585095 yo))

\ \ / 1 / 
GAMMA(-1. - 1. p)/, p = 0|, limit|---------------------- \0.3183098861 sin(
/ \GAMMA(p + 1.906900000)

3.141592654 p + 3.141592654) exp(-3.040840432 - 1.520420216 p

p \ \ 
+ 0.2302585095 yo) (exp(0.2302585095 yo)) GAMMA(-1. - 1. p)/, p = 1|, 
/

/ 1 / 
limit|---------------------- \0.3183098861 sin(3.141592654 p + 3.141592654) 
\GAMMA(p + 1.906900000)


exp(-3.040840432 - 1.520420216 p + 0.2302585095 yo) (exp(0.2302585095 yo))

\ \ / 1 / 
GAMMA(-1. - 1. p)/, p = 2|, limit|---------------------- \0.3183098861 sin(
/ \GAMMA(p + 1.906900000)

3.141592654 p + 3.141592654) exp(-3.040840432 - 1.520420216 p

p \ \ 
+ 0.2302585095 yo) (exp(0.2302585095 yo)) GAMMA(-1. - 1. p)/, p = 3|, 
/

/ 1 / 
limit|---------------------- \0.3183098861 sin(3.141592654 p + 3.141592654) 
\GAMMA(p + 1.906900000)


exp(-3.040840432 - 1.520420216 p + 0.2302585095 yo) (exp(0.2302585095 yo))

\ \ / 1 / 
GAMMA(-1. - 1. p)/, p = 4|, limit|---------------------- \0.3183098861 sin(
/ \GAMMA(p + 1.906900000)

3.141592654 p + 3.141592654) exp(-3.040840432 - 1.520420216 p

p \ \ 
+ 0.2302585095 yo) (exp(0.2302585095 yo)) GAMMA(-1. - 1. p)/, p = 5|, 
/

/ 1 / 
limit|---------------------- \0.3183098861 sin(3.141592654 p + 3.141592654) 
\GAMMA(p + 1.906900000)


exp(-3.040840432 - 1.520420216 p + 0.2302585095 yo) (exp(0.2302585095 yo))

\ \ / 1 / 
GAMMA(-1. - 1. p)/, p = 6|, limit|---------------------- \0.3183098861 sin(
/ \GAMMA(p + 1.906900000)

3.141592654 p + 3.141592654) exp(-3.040840432 - 1.520420216 p

p \ \ 
+ 0.2302585095 yo) (exp(0.2302585095 yo)) GAMMA(-1. - 1. p)/, p = 7|, 
/

/ 1 / 
limit|---------------------- \0.3183098861 sin(3.141592654 p + 3.141592654) 
\GAMMA(p + 1.906900000)


exp(-3.040840432 - 1.520420216 p + 0.2302585095 yo) (exp(0.2302585095 yo))

\ \ / 1 / 
GAMMA(-1. - 1. p)/, p = 8|, limit|---------------------- \0.3183098861 sin(
/ \GAMMA(p + 1.906900000)

3.141592654 p + 3.141592654) exp(-3.040840432 - 1.520420216 p

p \ \ 
+ 0.2302585095 yo) (exp(0.2302585095 yo)) GAMMA(-1. - 1. p)/, p = 9|, 
/

/ 1 / 
limit|---------------------- \0.3183098861 sin(3.141592654 p + 3.141592654) 
\GAMMA(p + 1.906900000)


exp(-3.040840432 - 1.520420216 p + 0.2302585095 yo) (exp(0.2302585095 yo))

\ \]
GAMMA(-1. - 1. p)/, p = 10|]
/]

 

 

 

 

 

why the solution is in limit approaches to form??? need to have a closed form expression. any help..????

I am trying to perform the following manipulation (This is a minimum working example).

 

a < b  < c;
(1)*2;

Error, invalid terms in product: a < b and b < c

 Can anyone tell if it is possible to manipulate inequalities exactly as it is the case with equations?

 

Simple Physics Problem...

November 19 2014 Keith Dow 0

I have two Reissner Nordstrom black holes that are near extreme. How do I show they move? 

export expression to word ...

November 19 2014 aTec 10

When i copy expression and past it in word, i can change the size of the picture whitout loosing the detials.

How can i export the expression to a file, such that when i will open it in word i could change the size without loosing details? much thnks :)

Dear Maple users,

My problem is as follows:

I have a factor base [2,3,5,7,11,33,34,35,36,37,38,39,40]

The numbers from 2 till 11 are primes, the rest is not. 

Then I have to factor (H+c1)(H+c2) in numbers of the factor base , where c1 and c2 go from 1 to some pre-defined limit. H=32 in my case.
And then I have to put the powers of the numbers of the factor base in a matrix. For example: (H+1)(H+1)=33² but also (H+1)(H+1)=3²*11².

That will become in matrix form [0 , 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0 ] but also (!) [0 , 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0 ].

This is not what I want! I want no double representations....

What I want is that (H+c1)(H+c2) should be represented in primes in the matrix if possible and else just represented as the other numbers.

 

hope you guys can help me!

Hi,

 

I have a system of equations containing curls, divergence and gradients of variables. 

How can I extract the coefficients of the equations (i.e. coefficients of d/dt rho, d/dx p) and form a matrix?

thanks.   

Dear all,

I have a question, why is the output of the inverse Laplace transformation if the signal is multiplied by itself not just convoluted in time domain:

restart:
with(inttrans):
u0(s):=laplace(u0(t),t,s):
ul(s):=laplace(ul(t),t,s):

invlaplace(u0(s)*ul(s),s,t);
invlaplace(u0(s)*u0(s),s,t);

 

Thanks!

 

hi

i am trying to solve nonlinear system of equations>

But i faced problems with fsolve command and solve command

appreciate your efforts

thank you.

i attached the problem if any one can help meto_ask.mw

resatart;

resatart

(1)

E[1]:=471.018201448812350417026549714*C[2]*C[1]+148.215735866021516352269641351*C[3]*C[1]+1819.06587325966981030289478684*C[1]^3+520.398873394086389608807266267*C[1]^2+91.6935836202883451116448236302*C[1]+50.4730912279207745584225849550*C[2]+19.9085633544913263914456592743*C[3]+7.37047428400435090736231078968+2058.68551751777751319606573790*C[1]^2*C[2]+538.947230507659865581021915944*C[1]^2*C[3]+5845.71206131980239307198520604*C[1]^3*C[2]+69.7127022912194568273754946252*C[2]*C[3]+714.578012051731012130317887974*C[2]^2*C[1]+1335.12741025874305723396688959*C[3]*C[1]^3+12157.6789376307684367951252086*C[1]^4*C[2]+2649.25449662999887750280740574*C[2]^2*C[1]^2+14295.0784862597862660994822740*C[1]^8+15419.2846919327017114194783308*C[1]^7+12988.7517416642139784208462738*C[1]^6+16.8382038872893957093383440000*C[2]^4+70.8332628196190412620305577015*C[2]^3+1.44270946696121179778587859413*C[3]^3+4510.00238293949012248750841678*C[1]^4+8603.52635510176910780764444620*C[1]^5+98.8104905773476764461233724605*C[2]^2+10.1537285012728093021569041975*C[3]^2+982.222581518989031760243574949*C[1]^11+4638.21478259707435511949025320*C[1]^10+10052.6606516341018431728672421*C[1]^9+407.687063314179709424921418616*C[3]*C[2]*C[1]+75.7719174928022814213736862098*C[3]^2*C[2]*C[1]+25.2573058309340935640075160001*C[3]*C[2]^3+6.31432645773352351256040203496*C[1]*C[3]^3+12.6286529154670467820037580001*C[2]^2*C[3]^2+2.10477548591117446366729300002*C[2]*C[3]^3+211.344764831208915814670185548*C[3]^2*C[1]^3+7.20005467320229588757253538206*C[1]^2*C[3]^3+111.061430002472320297142331967*C[1]*C[2]^4+238.500386718071412970815287708*C[1]^4*C[3]^2+2470.41109018725090594289626356*C[2]^3*C[1]^3+245.201283148587317451118521393*C[2]^4*C[1]^2+181.129142851463591068444931825*C[2]^4*C[1]^3+2988.37811797198976000003713722*C[3]*C[1]^6+109.721226223930092622823355221*C[1]^5*C[3]^2+11719.3084513103578461807709227*C[1]^5*C[2]^2+2768.20160910310649927384469736*C[1]^4*C[2]^3+565.318306286272203162846540832*C[1]^8*C[3]+10932.5561693883776137371116117*C[1]^8*C[2]+2904.27246127876533797534297274*C[1]^7*C[2]^2+1952.53821736667546565020861980*C[3]*C[1]^7+8861.99977348975008001821282156*C[2]^2*C[1]^6+1254.10257521815148306369855874*C[2]^3*C[1]^5+19097.0760464300655744068743926*C[1]^7*C[2]+2811.03926218004500859025906710*C[1]^9*C[2]+57.4530755155979171964227079426*C[1]*C[3]^2+836.065308595115722315610440362*C[3]*C[2]^2*C[1]^2+168.144436791995138074477654505*C[1]^2*C[2]*C[3]^2+111.061430002472320297142331967*C[3]*C[1]*C[2]^3+27.7653575006180800742855829918*C[1]*C[2]^2*C[3]^2+3287.26031145537499942195550694*C[3]*C[1]^4*C[2]+127.200206249638084450380203222*C[1]^3*C[2]*C[3]^2+1244.40467444431430442109001683*C[3]*C[1]^3*C[2]^2+122.600641574293658725559260697*C[3]*C[2]^3*C[1]^2+2976.40437278655359156395744743*C[3]*C[1]^5*C[2]+704.866518858564769916472506595*C[3]*C[1]^4*C[2]^2+1138.98062679722733273662076856*C[3]*C[1]^6*C[2]+2445.22760310248377117380837984*C[1]^3*C[2]*C[3]+1302.58340353182418292173788075*C[1]^2*C[2]*C[3]+358.002894560559015938580075092*C[1]*C[2]^2*C[3]+1346.85403641174851926917778882*C[2]^3*C[1]^2+21853.3314580455402045658443233*C[1]^6*C[2]+3064.67804343975531590307429378*C[1]^5*C[3]+18831.8659547488267980067894851*C[1]^5*C[2]+2386.63766423133333668246261663*C[1]^4*C[3]+10051.2504836101574266428345548*C[1]^4*C[2]^2+6283.05695591453291326103369848*C[1]^3*C[2]^2+76.6041006874638884531740720781*C[2]^2*C[3]+136.001112450833566039453512948*C[1]^2*C[3]^2+463.432730811777094292148621626*C[1]*C[2]^3+23.4791535727496075066511538019*C[2]*C[3]^2;

7.37047428400435090736231078968+407.687063314179709424921418616*C[3]*C[2]*C[1]+75.7719174928022814213736862098*C[3]^2*C[2]*C[1]+836.065308595115722315610440362*C[3]*C[2]^2*C[1]^2+168.144436791995138074477654505*C[1]^2*C[2]*C[3]^2+111.061430002472320297142331967*C[3]*C[1]*C[2]^3+27.7653575006180800742855829918*C[1]*C[2]^2*C[3]^2+3287.26031145537499942195550694*C[3]*C[1]^4*C[2]+127.200206249638084450380203222*C[1]^3*C[2]*C[3]^2+1244.40467444431430442109001683*C[3]*C[1]^3*C[2]^2+122.600641574293658725559260697*C[3]*C[2]^3*C[1]^2+2976.40437278655359156395744743*C[3]*C[1]^5*C[2]+704.866518858564769916472506595*C[3]*C[1]^4*C[2]^2+1138.98062679722733273662076856*C[3]*C[1]^6*C[2]+2445.22760310248377117380837984*C[1]^3*C[2]*C[3]+1302.58340353182418292173788075*C[1]^2*C[2]*C[3]+358.002894560559015938580075092*C[1]*C[2]^2*C[3]+471.018201448812350417026549714*C[2]*C[1]+148.215735866021516352269641351*C[3]*C[1]+2058.68551751777751319606573790*C[1]^2*C[2]+538.947230507659865581021915944*C[1]^2*C[3]+5845.71206131980239307198520604*C[1]^3*C[2]+69.7127022912194568273754946252*C[2]*C[3]+714.578012051731012130317887974*C[2]^2*C[1]+1335.12741025874305723396688959*C[3]*C[1]^3+12157.6789376307684367951252086*C[1]^4*C[2]+2649.25449662999887750280740574*C[2]^2*C[1]^2+25.2573058309340935640075160001*C[3]*C[2]^3+6.31432645773352351256040203496*C[1]*C[3]^3+12.6286529154670467820037580001*C[2]^2*C[3]^2+2.10477548591117446366729300002*C[2]*C[3]^3+211.344764831208915814670185548*C[3]^2*C[1]^3+7.20005467320229588757253538206*C[1]^2*C[3]^3+111.061430002472320297142331967*C[1]*C[2]^4+238.500386718071412970815287708*C[1]^4*C[3]^2+2470.41109018725090594289626356*C[2]^3*C[1]^3+245.201283148587317451118521393*C[2]^4*C[1]^2+181.129142851463591068444931825*C[2]^4*C[1]^3+2988.37811797198976000003713722*C[3]*C[1]^6+109.721226223930092622823355221*C[1]^5*C[3]^2+11719.3084513103578461807709227*C[1]^5*C[2]^2+2768.20160910310649927384469736*C[1]^4*C[2]^3+565.318306286272203162846540832*C[1]^8*C[3]+10932.5561693883776137371116117*C[1]^8*C[2]+2904.27246127876533797534297274*C[1]^7*C[2]^2+1952.53821736667546565020861980*C[3]*C[1]^7+8861.99977348975008001821282156*C[2]^2*C[1]^6+1254.10257521815148306369855874*C[2]^3*C[1]^5+19097.0760464300655744068743926*C[1]^7*C[2]+2811.03926218004500859025906710*C[1]^9*C[2]+57.4530755155979171964227079426*C[1]*C[3]^2+1346.85403641174851926917778882*C[2]^3*C[1]^2+21853.3314580455402045658443233*C[1]^6*C[2]+3064.67804343975531590307429378*C[1]^5*C[3]+18831.8659547488267980067894851*C[1]^5*C[2]+2386.63766423133333668246261663*C[1]^4*C[3]+10051.2504836101574266428345548*C[1]^4*C[2]^2+6283.05695591453291326103369848*C[1]^3*C[2]^2+76.6041006874638884531740720781*C[2]^2*C[3]+136.001112450833566039453512948*C[1]^2*C[3]^2+463.432730811777094292148621626*C[1]*C[2]^3+23.4791535727496075066511538019*C[2]*C[3]^2+14295.0784862597862660994822740*C[1]^8+15419.2846919327017114194783308*C[1]^7+12988.7517416642139784208462738*C[1]^6+16.8382038872893957093383440000*C[2]^4+70.8332628196190412620305577015*C[2]^3+1.44270946696121179778587859413*C[3]^3+8603.52635510176910780764444620*C[1]^5+10.1537285012728093021569041975*C[3]^2+982.222581518989031760243574949*C[1]^11+4638.21478259707435511949025320*C[1]^10+10052.6606516341018431728672421*C[1]^9+50.4730912279207745584225849550*C[2]+91.6935836202883451116448236302*C[1]+19.9085633544913263914456592743*C[3]+1819.06587325966981030289478684*C[1]^3+520.398873394086389608807266267*C[1]^2+98.8104905773476764461233724605*C[2]^2+4510.00238293949012248750841678*C[1]^4

(2)

E[2]:=197.620981154695352892246744921*C[2]*C[1]+69.7127022912194568273754946252*C[3]*C[1]+686.228505839259171065355245966*C[1]^3+235.509100724406175208513274857*C[1]^2+50.4730912279207745584225849550*C[1]+26.5447511393217685219275456990*C[2]+13.2723755696608842609637728496*C[3]+4.91364952266956727157487385979+714.578012051731012130317887974*C[1]^2*C[2]+203.843531657089854712460709308*C[1]^2*C[3]+1766.16966441999925166853827049*C[1]^3*C[2]+27.0766093367274914724184111932*C[2]*C[3]+212.499788458857123786091673104*C[2]^2*C[1]+434.194467843941394307245960251*C[3]*C[1]^3+3141.52847795726645663051684924*C[1]^4*C[2]+695.149096217665641438222932439*C[2]^2*C[1]^2+2387.13450580375819680085929907*C[1]^8+3121.90449400650574350940633190*C[1]^7+3138.64432579147113300113158085*C[1]^6+7.69445049045979625485801916864*C[2]^3+.961806311307474531857252396085*C[3]^3+1461.42801532995059826799630151*C[1]^4+2431.53578752615368735902504171*C[1]^5+27.0766093367274914724184111932*C[2]^2+6.76915233418187286810460279831*C[3]^2+281.103926218004500859025906710*C[1]^10+1214.72846326537529041523462352*C[1]^9+153.208201374927776906348144156*C[3]*C[2]*C[1]+25.2573058309340935640075160002*C[3]^2*C[2]*C[1]+2.10477548591117446366729300002*C[1]*C[3]^3+56.0481455973317126914925515018*C[3]^2*C[1]^3+31.8000515624095211125950508054*C[1]^4*C[3]^2+326.935044198116423268158028524*C[2]^3*C[1]^3+496.067395464425598593992907905*C[3]*C[1]^6+1660.92096546186389956430681841*C[1]^5*C[2]^2+181.129142851463591068444931825*C[1]^4*C[2]^3+726.068115319691334493835743184*C[1]^8*C[2]+162.711518113889618962374395509*C[3]*C[1]^7+627.051287609075741531849279370*C[2]^2*C[1]^6+2531.99993528278573714806080616*C[1]^7*C[2]+23.4791535727496075066511538019*C[1]*C[3]^2+166.592145003708480445713497950*C[3]*C[2]^2*C[1]^2+27.7653575006180800742855829918*C[1]^2*C[2]*C[3]^2+622.202337222157152210545008414*C[3]*C[1]^4*C[2]+122.600641574293658725559260697*C[3]*C[1]^3*C[2]^2+281.946607543425907966589002638*C[3]*C[1]^5*C[2]+557.376872396743814877073626908*C[1]^3*C[2]*C[3]+358.002894560559015938580075092*C[1]^2*C[2]*C[3]+75.7719174928022806920225480003*C[1]*C[2]^2*C[3]+222.122860004944640594284663933*C[2]^3*C[1]^2+3906.43615043678594872692364090*C[1]^6*C[2]+657.452062291074999884391101389*C[1]^5*C[3]+4020.50019344406297065713382194*C[1]^5*C[2]+611.306900775620942793452094961*C[1]^4*C[3]+1852.80831764043817945717219767*C[1]^4*C[2]^2+1346.85403641174851926917778882*C[1]^3*C[2]^2+11.5416757356896943822870287530*C[2]^2*C[3]+37.8859587464011407106868431049*C[1]^2*C[3]^2+67.3528155491575828373533760000*C[1]*C[2]^3+5.77083786784484719114351437650*C[2]*C[3]^2;

153.208201374927776906348144156*C[3]*C[2]*C[1]+25.2573058309340935640075160002*C[3]^2*C[2]*C[1]+166.592145003708480445713497950*C[3]*C[2]^2*C[1]^2+27.7653575006180800742855829918*C[1]^2*C[2]*C[3]^2+622.202337222157152210545008414*C[3]*C[1]^4*C[2]+122.600641574293658725559260697*C[3]*C[1]^3*C[2]^2+281.946607543425907966589002638*C[3]*C[1]^5*C[2]+557.376872396743814877073626908*C[1]^3*C[2]*C[3]+358.002894560559015938580075092*C[1]^2*C[2]*C[3]+75.7719174928022806920225480003*C[1]*C[2]^2*C[3]+197.620981154695352892246744921*C[2]*C[1]+69.7127022912194568273754946252*C[3]*C[1]+714.578012051731012130317887974*C[1]^2*C[2]+203.843531657089854712460709308*C[1]^2*C[3]+1766.16966441999925166853827049*C[1]^3*C[2]+27.0766093367274914724184111932*C[2]*C[3]+212.499788458857123786091673104*C[2]^2*C[1]+434.194467843941394307245960251*C[3]*C[1]^3+3141.52847795726645663051684924*C[1]^4*C[2]+695.149096217665641438222932439*C[2]^2*C[1]^2+2.10477548591117446366729300002*C[1]*C[3]^3+56.0481455973317126914925515018*C[3]^2*C[1]^3+31.8000515624095211125950508054*C[1]^4*C[3]^2+326.935044198116423268158028524*C[2]^3*C[1]^3+496.067395464425598593992907905*C[3]*C[1]^6+1660.92096546186389956430681841*C[1]^5*C[2]^2+181.129142851463591068444931825*C[1]^4*C[2]^3+726.068115319691334493835743184*C[1]^8*C[2]+162.711518113889618962374395509*C[3]*C[1]^7+627.051287609075741531849279370*C[2]^2*C[1]^6+2531.99993528278573714806080616*C[1]^7*C[2]+23.4791535727496075066511538019*C[1]*C[3]^2+222.122860004944640594284663933*C[2]^3*C[1]^2+3906.43615043678594872692364090*C[1]^6*C[2]+657.452062291074999884391101389*C[1]^5*C[3]+4020.50019344406297065713382194*C[1]^5*C[2]+611.306900775620942793452094961*C[1]^4*C[3]+1852.80831764043817945717219767*C[1]^4*C[2]^2+1346.85403641174851926917778882*C[1]^3*C[2]^2+11.5416757356896943822870287530*C[2]^2*C[3]+37.8859587464011407106868431049*C[1]^2*C[3]^2+67.3528155491575828373533760000*C[1]*C[2]^3+5.77083786784484719114351437650*C[2]*C[3]^2+4.91364952266956727157487385979+2387.13450580375819680085929907*C[1]^8+3121.90449400650574350940633190*C[1]^7+3138.64432579147113300113158085*C[1]^6+7.69445049045979625485801916864*C[2]^3+.961806311307474531857252396085*C[3]^3+2431.53578752615368735902504171*C[1]^5+6.76915233418187286810460279831*C[3]^2+281.103926218004500859025906710*C[1]^10+1214.72846326537529041523462352*C[1]^9+26.5447511393217685219275456990*C[2]+50.4730912279207745584225849550*C[1]+13.2723755696608842609637728496*C[3]+686.228505839259171065355245966*C[1]^3+235.509100724406175208513274857*C[1]^2+27.0766093367274914724184111932*C[2]^2+1461.42801532995059826799630151*C[1]^4

(3)

E[3]:=69.7127022912194568273754946252*C[2]*C[1]+20.3074570025456186043138083950*C[3]*C[1]+179.649076835886621860340638648*C[1]^3+74.1078679330107581761348206757*C[1]^2+19.9085633544913263914456592743*C[1]+13.2723755696608842609637728496*C[2]+6.63618778483044213048188642478*C[3]+2.45682476133478363578743692990+203.843531657089854712460709308*C[1]^2*C[2]+57.4530755155979171964227079426*C[1]^2*C[3]+434.194467843941394307245960251*C[1]^3*C[2]+13.5383046683637457362092055966*C[2]*C[3]+76.6041006874638884531740720781*C[2]^2*C[1]+90.6674083005557106929690086320*C[3]*C[1]^3+611.306900775620942793452094961*C[1]^4*C[2]+179.001447280279507969290037546*C[2]^2*C[1]^2+244.067277170834433206276077475*C[1]^8+426.911159710284251428576733889*C[1]^7+510.779673906625885983845715630*C[1]^6+3.84722524522989812742900958432*C[2]^3+.480903155653737265928626198044*C[3]^3+333.781852564685764308491722397*C[1]^4+477.327532846266667336492523326*C[1]^5+13.5383046683637457362092055966*C[2]^2+3.38457616709093643405230139915*C[3]^2+62.8131451429191336847607267591*C[1]^9+46.9583071454992150133023076038*C[3]*C[2]*C[1]+6.31432645773352339100187900006*C[3]^2*C[2]*C[1]+7.20005467320229588757253538206*C[3]^2*C[1]^3+40.8668805247645529085197535656*C[2]^3*C[1]^3+36.5737420746433642076077850736*C[3]*C[1]^6+140.973303771712953983294501319*C[1]^5*C[2]^2+162.711518113889618962374395509*C[1]^7*C[2]+4.32812840088363539335763578239*C[1]*C[3]^2+27.7653575006180800742855829918*C[3]*C[2]^2*C[1]^2+63.6001031248190422251901016108*C[3]*C[1]^4*C[2]+112.096291194663425382985103004*C[1]^3*C[2]*C[3]+75.7719174928022814213736862098*C[1]^2*C[2]*C[3]+25.2573058309340935640075160002*C[1]*C[2]^2*C[3]+55.5307150012361601485711659834*C[2]^3*C[1]^2+496.067395464425598593992907905*C[1]^6*C[2]+95.4001546872285651883261150834*C[1]^5*C[3]+657.452062291074999884391101389*C[1]^5*C[2]+105.672382415604457907335092774*C[1]^4*C[3]+311.101168611078576105272504207*C[1]^4*C[2]^2+278.688436198371907438536813454*C[1]^3*C[2]^2+5.77083786784484719114351437650*C[2]^2*C[3]+9.47148968660028526884060305244*C[1]^2*C[3]^2+25.2573058309340935640075160001*C[1]*C[2]^3+2.88541893392242359557175718826*C[2]*C[3]^2;

46.9583071454992150133023076038*C[3]*C[2]*C[1]+6.31432645773352339100187900006*C[3]^2*C[2]*C[1]+27.7653575006180800742855829918*C[3]*C[2]^2*C[1]^2+63.6001031248190422251901016108*C[3]*C[1]^4*C[2]+112.096291194663425382985103004*C[1]^3*C[2]*C[3]+75.7719174928022814213736862098*C[1]^2*C[2]*C[3]+25.2573058309340935640075160002*C[1]*C[2]^2*C[3]+69.7127022912194568273754946252*C[2]*C[1]+20.3074570025456186043138083950*C[3]*C[1]+203.843531657089854712460709308*C[1]^2*C[2]+57.4530755155979171964227079426*C[1]^2*C[3]+434.194467843941394307245960251*C[1]^3*C[2]+13.5383046683637457362092055966*C[2]*C[3]+76.6041006874638884531740720781*C[2]^2*C[1]+90.6674083005557106929690086320*C[3]*C[1]^3+611.306900775620942793452094961*C[1]^4*C[2]+179.001447280279507969290037546*C[2]^2*C[1]^2+7.20005467320229588757253538206*C[3]^2*C[1]^3+40.8668805247645529085197535656*C[2]^3*C[1]^3+36.5737420746433642076077850736*C[3]*C[1]^6+140.973303771712953983294501319*C[1]^5*C[2]^2+162.711518113889618962374395509*C[1]^7*C[2]+4.32812840088363539335763578239*C[1]*C[3]^2+55.5307150012361601485711659834*C[2]^3*C[1]^2+496.067395464425598593992907905*C[1]^6*C[2]+95.4001546872285651883261150834*C[1]^5*C[3]+657.452062291074999884391101389*C[1]^5*C[2]+105.672382415604457907335092774*C[1]^4*C[3]+311.101168611078576105272504207*C[1]^4*C[2]^2+278.688436198371907438536813454*C[1]^3*C[2]^2+5.77083786784484719114351437650*C[2]^2*C[3]+9.47148968660028526884060305244*C[1]^2*C[3]^2+25.2573058309340935640075160001*C[1]*C[2]^3+2.88541893392242359557175718826*C[2]*C[3]^2+2.45682476133478363578743692990+244.067277170834433206276077475*C[1]^8+426.911159710284251428576733889*C[1]^7+510.779673906625885983845715630*C[1]^6+3.84722524522989812742900958432*C[2]^3+.480903155653737265928626198044*C[3]^3+477.327532846266667336492523326*C[1]^5+3.38457616709093643405230139915*C[3]^2+62.8131451429191336847607267591*C[1]^9+13.2723755696608842609637728496*C[2]+19.9085633544913263914456592743*C[1]+6.63618778483044213048188642478*C[3]+179.649076835886621860340638648*C[1]^3+74.1078679330107581761348206757*C[1]^2+13.5383046683637457362092055966*C[2]^2+333.781852564685764308491722397*C[1]^4

(4)

fsolve({E[1]=0, E[2]=0,E[3]=0});

fsolve({46.9583071454992150133023076038*C[3]*C[2]*C[1]+6.31432645773352339100187900006*C[3]^2*C[2]*C[1]+27.7653575006180800742855829918*C[3]*C[2]^2*C[1]^2+63.6001031248190422251901016108*C[3]*C[1]^4*C[2]+112.096291194663425382985103004*C[1]^3*C[2]*C[3]+75.7719174928022814213736862098*C[1]^2*C[2]*C[3]+25.2573058309340935640075160002*C[1]*C[2]^2*C[3]+69.7127022912194568273754946252*C[2]*C[1]+20.3074570025456186043138083950*C[3]*C[1]+203.843531657089854712460709308*C[1]^2*C[2]+57.4530755155979171964227079426*C[1]^2*C[3]+434.194467843941394307245960251*C[1]^3*C[2]+13.5383046683637457362092055966*C[2]*C[3]+76.6041006874638884531740720781*C[2]^2*C[1]+90.6674083005557106929690086320*C[3]*C[1]^3+611.306900775620942793452094961*C[1]^4*C[2]+179.001447280279507969290037546*C[2]^2*C[1]^2+7.20005467320229588757253538206*C[3]^2*C[1]^3+40.8668805247645529085197535656*C[2]^3*C[1]^3+36.5737420746433642076077850736*C[3]*C[1]^6+140.973303771712953983294501319*C[1]^5*C[2]^2+162.711518113889618962374395509*C[1]^7*C[2]+4.32812840088363539335763578239*C[1]*C[3]^2+55.5307150012361601485711659834*C[2]^3*C[1]^2+496.067395464425598593992907905*C[1]^6*C[2]+95.4001546872285651883261150834*C[1]^5*C[3]+657.452062291074999884391101389*C[1]^5*C[2]+105.672382415604457907335092774*C[1]^4*C[3]+311.101168611078576105272504207*C[1]^4*C[2]^2+278.688436198371907438536813454*C[1]^3*C[2]^2+5.77083786784484719114351437650*C[2]^2*C[3]+9.47148968660028526884060305244*C[1]^2*C[3]^2+25.2573058309340935640075160001*C[1]*C[2]^3+2.88541893392242359557175718826*C[2]*C[3]^2+2.45682476133478363578743692990+244.067277170834433206276077475*C[1]^8+426.911159710284251428576733889*C[1]^7+510.779673906625885983845715630*C[1]^6+3.84722524522989812742900958432*C[2]^3+.480903155653737265928626198044*C[3]^3+477.327532846266667336492523326*C[1]^5+3.38457616709093643405230139915*C[3]^2+62.8131451429191336847607267591*C[1]^9+13.2723755696608842609637728496*C[2]+19.9085633544913263914456592743*C[1]+6.63618778483044213048188642478*C[3]+179.649076835886621860340638648*C[1]^3+74.1078679330107581761348206757*C[1]^2+13.5383046683637457362092055966*C[2]^2+333.781852564685764308491722397*C[1]^4 = 0, 153.208201374927776906348144156*C[3]*C[2]*C[1]+25.2573058309340935640075160002*C[3]^2*C[2]*C[1]+166.592145003708480445713497950*C[3]*C[2]^2*C[1]^2+27.7653575006180800742855829918*C[1]^2*C[2]*C[3]^2+622.202337222157152210545008414*C[3]*C[1]^4*C[2]+122.600641574293658725559260697*C[3]*C[1]^3*C[2]^2+281.946607543425907966589002638*C[3]*C[1]^5*C[2]+557.376872396743814877073626908*C[1]^3*C[2]*C[3]+358.002894560559015938580075092*C[1]^2*C[2]*C[3]+75.7719174928022806920225480003*C[1]*C[2]^2*C[3]+197.620981154695352892246744921*C[2]*C[1]+69.7127022912194568273754946252*C[3]*C[1]+714.578012051731012130317887974*C[1]^2*C[2]+203.843531657089854712460709308*C[1]^2*C[3]+1766.16966441999925166853827049*C[1]^3*C[2]+27.0766093367274914724184111932*C[2]*C[3]+212.499788458857123786091673104*C[2]^2*C[1]+434.194467843941394307245960251*C[3]*C[1]^3+3141.52847795726645663051684924*C[1]^4*C[2]+695.149096217665641438222932439*C[2]^2*C[1]^2+2.10477548591117446366729300002*C[1]*C[3]^3+56.0481455973317126914925515018*C[3]^2*C[1]^3+31.8000515624095211125950508054*C[1]^4*C[3]^2+326.935044198116423268158028524*C[2]^3*C[1]^3+496.067395464425598593992907905*C[3]*C[1]^6+1660.92096546186389956430681841*C[1]^5*C[2]^2+181.129142851463591068444931825*C[1]^4*C[2]^3+726.068115319691334493835743184*C[1]^8*C[2]+162.711518113889618962374395509*C[3]*C[1]^7+627.051287609075741531849279370*C[2]^2*C[1]^6+2531.99993528278573714806080616*C[1]^7*C[2]+23.4791535727496075066511538019*C[1]*C[3]^2+222.122860004944640594284663933*C[2]^3*C[1]^2+3906.43615043678594872692364090*C[1]^6*C[2]+657.452062291074999884391101389*C[1]^5*C[3]+4020.50019344406297065713382194*C[1]^5*C[2]+611.306900775620942793452094961*C[1]^4*C[3]+1852.80831764043817945717219767*C[1]^4*C[2]^2+1346.85403641174851926917778882*C[1]^3*C[2]^2+11.5416757356896943822870287530*C[2]^2*C[3]+37.8859587464011407106868431049*C[1]^2*C[3]^2+67.3528155491575828373533760000*C[1]*C[2]^3+5.77083786784484719114351437650*C[2]*C[3]^2+4.91364952266956727157487385979+2387.13450580375819680085929907*C[1]^8+3121.90449400650574350940633190*C[1]^7+3138.64432579147113300113158085*C[1]^6+7.69445049045979625485801916864*C[2]^3+.961806311307474531857252396085*C[3]^3+2431.53578752615368735902504171*C[1]^5+6.76915233418187286810460279831*C[3]^2+281.103926218004500859025906710*C[1]^10+1214.72846326537529041523462352*C[1]^9+26.5447511393217685219275456990*C[2]+50.4730912279207745584225849550*C[1]+13.2723755696608842609637728496*C[3]+686.228505839259171065355245966*C[1]^3+235.509100724406175208513274857*C[1]^2+27.0766093367274914724184111932*C[2]^2+1461.42801532995059826799630151*C[1]^4 = 0, 7.37047428400435090736231078968+407.687063314179709424921418616*C[3]*C[2]*C[1]+75.7719174928022814213736862098*C[3]^2*C[2]*C[1]+836.065308595115722315610440362*C[3]*C[2]^2*C[1]^2+168.144436791995138074477654505*C[1]^2*C[2]*C[3]^2+111.061430002472320297142331967*C[3]*C[1]*C[2]^3+27.7653575006180800742855829918*C[1]*C[2]^2*C[3]^2+3287.26031145537499942195550694*C[3]*C[1]^4*C[2]+127.200206249638084450380203222*C[1]^3*C[2]*C[3]^2+1244.40467444431430442109001683*C[3]*C[1]^3*C[2]^2+122.600641574293658725559260697*C[3]*C[2]^3*C[1]^2+2976.40437278655359156395744743*C[3]*C[1]^5*C[2]+704.866518858564769916472506595*C[3]*C[1]^4*C[2]^2+1138.98062679722733273662076856*C[3]*C[1]^6*C[2]+2445.22760310248377117380837984*C[1]^3*C[2]*C[3]+1302.58340353182418292173788075*C[1]^2*C[2]*C[3]+358.002894560559015938580075092*C[1]*C[2]^2*C[3]+471.018201448812350417026549714*C[2]*C[1]+148.215735866021516352269641351*C[3]*C[1]+2058.68551751777751319606573790*C[1]^2*C[2]+538.947230507659865581021915944*C[1]^2*C[3]+5845.71206131980239307198520604*C[1]^3*C[2]+69.7127022912194568273754946252*C[2]*C[3]+714.578012051731012130317887974*C[2]^2*C[1]+1335.12741025874305723396688959*C[3]*C[1]^3+12157.6789376307684367951252086*C[1]^4*C[2]+2649.25449662999887750280740574*C[2]^2*C[1]^2+25.2573058309340935640075160001*C[3]*C[2]^3+6.31432645773352351256040203496*C[1]*C[3]^3+12.6286529154670467820037580001*C[2]^2*C[3]^2+2.10477548591117446366729300002*C[2]*C[3]^3+211.344764831208915814670185548*C[3]^2*C[1]^3+7.20005467320229588757253538206*C[1]^2*C[3]^3+111.061430002472320297142331967*C[1]*C[2]^4+238.500386718071412970815287708*C[1]^4*C[3]^2+2470.41109018725090594289626356*C[2]^3*C[1]^3+245.201283148587317451118521393*C[2]^4*C[1]^2+181.129142851463591068444931825*C[2]^4*C[1]^3+2988.37811797198976000003713722*C[3]*C[1]^6+109.721226223930092622823355221*C[1]^5*C[3]^2+11719.3084513103578461807709227*C[1]^5*C[2]^2+2768.20160910310649927384469736*C[1]^4*C[2]^3+565.318306286272203162846540832*C[1]^8*C[3]+10932.5561693883776137371116117*C[1]^8*C[2]+2904.27246127876533797534297274*C[1]^7*C[2]^2+1952.53821736667546565020861980*C[3]*C[1]^7+8861.99977348975008001821282156*C[2]^2*C[1]^6+1254.10257521815148306369855874*C[2]^3*C[1]^5+19097.0760464300655744068743926*C[1]^7*C[2]+2811.03926218004500859025906710*C[1]^9*C[2]+57.4530755155979171964227079426*C[1]*C[3]^2+1346.85403641174851926917778882*C[2]^3*C[1]^2+21853.3314580455402045658443233*C[1]^6*C[2]+3064.67804343975531590307429378*C[1]^5*C[3]+18831.8659547488267980067894851*C[1]^5*C[2]+2386.63766423133333668246261663*C[1]^4*C[3]+10051.2504836101574266428345548*C[1]^4*C[2]^2+6283.05695591453291326103369848*C[1]^3*C[2]^2+76.6041006874638884531740720781*C[2]^2*C[3]+136.001112450833566039453512948*C[1]^2*C[3]^2+463.432730811777094292148621626*C[1]*C[2]^3+23.4791535727496075066511538019*C[2]*C[3]^2+14295.0784862597862660994822740*C[1]^8+15419.2846919327017114194783308*C[1]^7+12988.7517416642139784208462738*C[1]^6+16.8382038872893957093383440000*C[2]^4+70.8332628196190412620305577015*C[2]^3+1.44270946696121179778587859413*C[3]^3+8603.52635510176910780764444620*C[1]^5+10.1537285012728093021569041975*C[3]^2+982.222581518989031760243574949*C[1]^11+4638.21478259707435511949025320*C[1]^10+10052.6606516341018431728672421*C[1]^9+50.4730912279207745584225849550*C[2]+91.6935836202883451116448236302*C[1]+19.9085633544913263914456592743*C[3]+1819.06587325966981030289478684*C[1]^3+520.398873394086389608807266267*C[1]^2+98.8104905773476764461233724605*C[2]^2+4510.00238293949012248750841678*C[1]^4 = 0}, {C[1], C[2], C[3]})

(5)

solve({E[1]=0, E[2]=0, E[3]=0}, [C[1],C[2],C[3]]);

Warning,  computation interrupted

 

NULL


Download to_ask.mwto_ask.mw

I want to print 2+3= in the input and get exactly the same output.

And how can i do it in a program?

Hello people in mapleprimes,

I want to solve the next system of equation for B/A and C/A.

eq1:=A+B=F+G;
eq2:=k*(A-B)=kappa*(F-G);
eq3:=F*exp(I*kappa*a)+G*exp(-I*kappa*a)=C*exp(I*k*a);
eq4:=kappa*F*exp(I*kappa*a)-kappa*G*exp(-I*kappa*a)=k*C*exp(I*k*a);


But, though it is well-known, solve({eq1,eq2,eq3,eq4},{B/A,C/A})
does not work well, as the values I want to solve it for are
expressions: B/A and C/A not variables.

Then, you might thing the next works well.
eq:=subs({B=A/t,C=A/u},{eq1,eq2,eq3,eq4}):
solve(eq,{t,u});

But, this doesn't work well, with the answer was
only the ratio of t and u expressed as the following:

t = t, u = exp(I*k*a)*(exp(-I*kappa*a)*k^2-exp(I*kappa*a)*k^2-exp(-I*kappa*a)*kappa^2+exp(I*kappa*a)*kappa^2)*t/(4*kappa*k*exp(I*kappa*a)*exp(-I*kappa*a))

Isn't there nice way to solve the above system of equation, except that
sol1:=solve({eq3,eq4},{F,G});assign(sol1);
sol2:=solve({eq1,eq2},{A,B});assign(sol2);

Best wishes
taro

1 2 3 4 5 6 7 Last Page 3 of 1082